/* Copyright (c) 2012-2015 Stanislaw Halik * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ /* * this file appeared originally in facetracknoir, was rewritten completely * following opentrack fork. * * originally written by Wim Vriend. */ #include "compat/sleep.hpp" #include "compat/util.hpp" #include "tracker.h" #include #include #include #if defined(_WIN32) # include #endif using namespace euler; using namespace gui_tracker_impl; constexpr double Tracker::r2d; constexpr double Tracker::d2r; Tracker::Tracker(Mappings& m, SelectedLibraries& libs, TrackLogger& logger) : m(m), libs(libs), logger(logger), backlog_time(0), tracking_started(false) { } Tracker::~Tracker() { set(f_should_quit, true); wait(); } Tracker::rmat Tracker::get_camera_offset_matrix(double c) { const double off[] = { d2r * c * (double)-s.camera_yaw, d2r * c * (double)-s.camera_pitch, d2r * c * (double)-s.camera_roll }; return euler::euler_to_rmat(off); } double Tracker::map(double pos, Map& axis) { bool altp = (pos < 0) && axis.opts.altp; axis.spline_main.set_tracking_active( !altp ); axis.spline_alt.set_tracking_active( altp ); auto& fc = altp ? axis.spline_alt : axis.spline_main; return double(fc.get_value(pos)); } void Tracker::t_compensate(const rmat& rmat, const euler_t& xyz, euler_t& output, bool disable_tx, bool disable_ty, bool disable_tz) { enum { tb_Z, tb_X, tb_Y }; // TY is really yaw axis. need swapping accordingly. // sign changes are due to right-vs-left handedness of coordinate system used const euler_t ret = rmat * euler_t(xyz(TZ), -xyz(TX), -xyz(TY)); if (disable_tz) output(TZ) = xyz(TZ); else output(TZ) = ret(tb_Z); if (disable_ty) output(TY) = xyz(TY); else output(TY) = -ret(tb_Y); if (disable_tx) output(TX) = xyz(TX); else output(TX) = -ret(tb_X); } #include "compat/nan.hpp" static inline double elide_nan(double value, double def) { if (nanp(value)) { if (nanp(def)) return 0; return def; } return value; } template static bool is_nan(const dmat& r) { for (int i = 0; i < u; i++) for (int j = 0; j < w; j++) if (nanp(r(i, j))) return true; return false; } constexpr double Tracker::c_mult; constexpr double Tracker::c_div; void Tracker::logic() { using namespace euler; logger.write_dt(); logger.reset_dt(); const bool center_ordered = get(f_center) && tracking_started; set(f_center, false); const bool own_center_logic = center_ordered && libs.pTracker->center(); Pose value, raw; for (int i = 0; i < 6; i++) { auto& axis = m(i); int k = axis.opts.src; if (k < 0 || k >= 6) value(i) = 0; else value(i) = newpose(k); raw(i) = newpose(i); } // hatire, udp, and freepie trackers can mess up here for (unsigned i = 3; i < 6; i++) { using std::fmod; using std::copysign; using std::fabs; const double x = value(i); if (fabs(x) - 1e-2 > 180) value(i) = fmod(x + copysign(180, x), 360) - copysign(180, x); else value(i) = clamp(x, -180, 180); } logger.write_pose(raw); // raw bool nanp = is_nan(raw) | is_nan(value); // TODO split this function, it's too big { euler_t tmp = d2r * euler_t(&value[Yaw]); scaled_rotation.rotation = euler_to_rmat(c_div * tmp); real_rotation.rotation = euler_to_rmat(tmp); } scaled_rotation.camera = get_camera_offset_matrix(c_div); real_rotation.camera = get_camera_offset_matrix(1); nanp |= is_nan(value) || is_nan(scaled_rotation.rotation) || is_nan(real_rotation.rotation); if (!tracking_started) { using std::fabs; for (int i = 0; i < 6; i++) if (fabs(newpose(i)) != 0) { tracking_started = true; break; } tracking_started &= !nanp; if (tracking_started && s.center_at_startup) { set(f_center, true); } } if (center_ordered) { if (libs.pFilter) libs.pFilter->center(); if (own_center_logic) { scaled_rotation.rotation = scaled_rotation.camera.t(); real_rotation.rotation = real_rotation.camera.t(); scaled_rotation.rotation = rmat::eye(); real_rotation.rotation = rmat::eye(); } else { real_rotation.rot_center = real_rotation.rotation.t(); scaled_rotation.rot_center = scaled_rotation.rotation.t(); } t_center = euler_t(&value(TX)); } { rmat rotation; switch (s.center_method) { // inertial case 0: default: //scaled_rotation.rotation = scaled_rotation rotation = scaled_rotation.rot_center * scaled_rotation.rotation; break; // camera case 1: rotation = scaled_rotation.rotation * scaled_rotation.rot_center; break; } euler_t rot = r2d * c_mult * rmat_to_euler(rotation); euler_t pos = euler_t(&value[TX]) - t_center; for (int i = 0; i < 3; i++) { // don't invert after t_compensate // inverting here doesn't break centering if (m(i+3).opts.invert) rot(i) = -rot(i); if (m(i).opts.invert) pos(i) = -pos(i); } t_compensate(real_rotation.camera.t(), pos, pos, false, false, false); for (int i = 0; i < 3; i++) { value(i) = pos(i); value(i+3) = rot(i); } } logger.write_pose(value); // "corrected" - after various transformations to account for camera position nanp |= is_nan(value); { { Pose tmp(value); // nan/inf values will corrupt filter internal state if (!nanp && libs.pFilter) libs.pFilter->filter(tmp, value); logger.write_pose(value); // "filtered" } euler_t neck, rel; if (s.neck_enable) { double ny = s.neck_y, nz = -s.neck_z; if (ny != 0 || nz != 0) { const rmat R = euler_to_rmat( euler_t(value(Yaw) * d2r, value(Pitch) * d2r, value(Roll) * d2r)); euler_t xyz(0, ny, nz); t_compensate(R, xyz, xyz, false, false, false); neck(TX) = xyz(TX); neck(TY) = xyz(TY) - ny; neck(TZ) = xyz(TZ) - nz; } } // CAVEAT rotation only, due to tcomp for (int i = 3; i < 6; i++) value(i) = map(value(i), m(i)); if (get(f_zero)) for (int i = 0; i < 6; i++) value(i) = 0; const bool reltrans = !get(f_tcomp_disabled); if (s.tcomp_p && reltrans) { const double tcomp_c[] = { double(!s.tcomp_disable_src_yaw), double(!s.tcomp_disable_src_pitch), double(!s.tcomp_disable_src_roll), }; const rmat R = euler_to_rmat( euler_t(value(Yaw) * d2r * tcomp_c[0], value(Pitch) * d2r * tcomp_c[1], value(Roll) * d2r * tcomp_c[2])); euler_t ret; t_compensate(R, euler_t(value(TX), value(TY), value(TZ)), ret, s.tcomp_disable_tx, s.tcomp_disable_ty, s.tcomp_disable_tz); for (int i = 0; i < 3; i++) rel(i) = ret(i) - value(i); } // don't t_compensate existing compensated values for (int i = 0; i < 3; i++) value(i) += neck(i) + rel(i); nanp |= is_nan(neck) | is_nan(rel) | is_nan(value); } // CAVEAT translation only, due to tcomp for (int i = 0; i < 3; i++) value(i) = map(value(i), m(i)); nanp |= is_nan(value); logger.write_pose(value); // "mapped" if (nanp) { QMutexLocker foo(&mtx); value = output_pose; raw = raw_6dof; // for widget last value display for (int i = 0; i < 6; i++) (void) map(raw_6dof(i), m(i)); } // custom zero position for (int i = 0; i < 6; i++) value(i) += m(i).opts.zero * (m(i).opts.invert ? -1 : 1); if (!nanp) libs.pProtocol->pose(value); QMutexLocker foo(&mtx); output_pose = value; raw_6dof = raw; logger.reset_dt(); logger.next_line(); } void Tracker::run() { #if defined(_WIN32) (void) timeBeginPeriod(1); #endif setPriority(QThread::HighPriority); { static constexpr const char* posechannels[6] = { "TX", "TY", "TZ", "Yaw", "Pitch", "Roll" }; static constexpr const char* datachannels[5] = { "dt", "raw", "corrected", "filtered", "mapped" }; logger.write(datachannels[0]); char buffer[128]; for (unsigned j = 1; j < 5; ++j) { for (unsigned i = 0; i < 6; ++i) { std::sprintf(buffer, "%s%s", datachannels[j], posechannels[i]); logger.write(buffer); } } logger.next_line(); } t.start(); logger.reset_dt(); while (!get(f_should_quit)) { Pose tmp; libs.pTracker->data(tmp); if (get(f_enabled)) for (int i = 0; i < 6; i++) newpose[i] = elide_nan(tmp(i), newpose(i)); logic(); static constexpr long const_sleep_us = 4000; using std::max; using std::min; const long elapsed_usecs = t.elapsed_usecs(); backlog_time += elapsed_usecs - const_sleep_us; if (std::fabs(backlog_time) > 10000l * 1000) { qDebug() << "tracker: backlog interval overflow" << backlog_time; backlog_time = 0; } const unsigned sleep_time = unsigned(std::round(clamp((const_sleep_us - backlog_time)/1000., 0., const_sleep_us*3/1000.))); t.start(); if (sleep_time > 0) portable::sleep(sleep_time); } { // filter may inhibit exact origin Pose p; libs.pProtocol->pose(p); } #if defined(_WIN32) (void) timeEndPeriod(1); #endif for (int i = 0; i < 6; i++) { m(i).spline_main.set_tracking_active(false); m(i).spline_alt.set_tracking_active(false); } } void Tracker::get_raw_and_mapped_poses(double* mapped, double* raw) const { QMutexLocker foo(&const_cast(*this).mtx); for (int i = 0; i < 6; i++) { raw[i] = raw_6dof(i); mapped[i] = output_pose(i); } } void bits::set(bits::flags flag_, bool val_) { const unsigned flag = unsigned(flag_); const unsigned val = unsigned(val_); for (;;) { unsigned b_(b); if (b.compare_exchange_weak(b_, unsigned((b_ & ~flag) | (flag * val)), std::memory_order_seq_cst, std::memory_order_seq_cst)) break; } } void bits::negate(bits::flags flag_) { const unsigned flag = unsigned(flag_); for (;;) { unsigned b_(b); if (b.compare_exchange_weak(b_, b_ ^ flag, std::memory_order_seq_cst, std::memory_order_seq_cst)) break; } } bool bits::get(bits::flags flag) { return !!(b & flag); } bits::bits() : b(0u) { set(f_center, true); set(f_enabled, true); set(f_zero, false); set(f_tcomp_disabled, false); set(f_should_quit, false); }