/* Copyright (c) 2012-2015 Stanislaw Halik * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ /* * this file appeared originally in facetracknoir, was rewritten completely * following opentrack fork. * * originally written by Wim Vriend. */ #include "compat/sleep.hpp" #include "tracker.h" #include #include #include #if defined(_WIN32) # include #endif constexpr double Tracker::r2d; constexpr double Tracker::d2r; Tracker::Tracker(Mappings &m, SelectedLibraries &libs, TrackLogger &logger) : m(m), libs(libs), logger(logger) { set(f_center, s.center_at_startup); } Tracker::~Tracker() { set(f_should_quit, true); wait(); } Tracker::rmat Tracker::get_camera_offset_matrix(double c) { const double off[] = { d2r * c * (double)-s.camera_yaw, d2r * c * (double)-s.camera_pitch, d2r * c * (double)-s.camera_roll }; return euler::euler_to_rmat(off); } double Tracker::map(double pos, Map& axis) { bool altp = (pos < 0) && axis.opts.altp; axis.spline_main.setTrackingActive( !altp ); axis.spline_alt.setTrackingActive( altp ); auto& fc = altp ? axis.spline_alt : axis.spline_main; return double(fc.getValue(pos)); } void Tracker::t_compensate(const rmat& rmat, const euler_t& xyz_, euler_t& output, bool rz) { // TY is really yaw axis. need swapping accordingly. const euler_t ret = rmat * euler_t(xyz_(TZ), -xyz_(TX), -xyz_(TY)); if (!rz) output(2) = ret(0); else output(2) = xyz_(2); output(1) = -ret(2); output(0) = -ret(1); } #include "compat/nan.hpp" static inline double elide_nan(double value, double def) { if (nanp(value)) { if (nanp(def)) return 0; return def; } return value; } template static bool is_nan(const dmat& r) { for (int i = 0; i < u; i++) for (int j = 0; j < w; j++) if (nanp(r(u, w))) return true; return false; } constexpr double Tracker::c_mult; constexpr double Tracker::c_div; void Tracker::logic() { using namespace euler; logger.write_dt(); logger.reset_dt(); Pose value, raw; for (int i = 0; i < 6; i++) { auto& axis = m(i); int k = axis.opts.src; if (k < 0 || k >= 6) value(i) = 0; else value(i) = newpose(k); raw(i) = newpose(i); } logger.write_pose(raw); // raw if (is_nan(raw)) raw = last_raw; // TODO split this function, it's too big { euler_t tmp = d2r * euler_t(&value[Yaw]); scaled_rotation.rotation = euler_to_rmat(c_div * tmp); real_rotation.rotation = euler_to_rmat(tmp); tait_bryan_to_matrices(c_div * tmp, scaled_rotation.rr, scaled_rotation.ry, scaled_rotation.rp); } scaled_rotation.camera = get_camera_offset_matrix(c_div); real_rotation.camera = get_camera_offset_matrix(1); scaled_rotation.rotation = scaled_rotation.camera * scaled_rotation.rotation; real_rotation.rotation = real_rotation.camera * real_rotation.rotation; bool nanp = is_nan(value) || is_nan(scaled_rotation.rotation) || is_nan(real_rotation.rotation); if (!nanp) { bool can_center = false; if (get(f_center) && !nanp) { using std::fabs; for (int i = 0; i < 6; i++) if (fabs(newpose(i)) != 0) { can_center = true; break; } } if (can_center) { set(f_center, false); if (libs.pFilter) libs.pFilter->center(); if (libs.pTracker->center()) { scaled_rotation.rotation = scaled_rotation.camera.t(); real_rotation.rotation = real_rotation.camera.t(); scaled_rotation.rotation = rmat::eye(); real_rotation.rotation = rmat::eye(); scaled_rotation.center_roll = rmat::eye(); scaled_rotation.center_yaw = rmat::eye(); scaled_rotation.center_pitch = rmat::eye(); } else { euler::tait_bryan_to_matrices(rmat_to_euler(scaled_rotation.rotation), scaled_rotation.center_roll, scaled_rotation.center_pitch, scaled_rotation.center_yaw); #if 0 euler::tait_bryan_to_matrices(rmat_to_euler(real_rotation.rotation), real_rotation.center_roll, real_rotation.center_pitch, real_rotation.center_yaw); #endif real_rotation.rot_center = real_rotation.rotation.t(); scaled_rotation.rot_center = scaled_rotation.rotation.t(); } t_center = euler_t(&value(TX)); } } { rmat rotation; switch (s.center_method) { // inertial case 0: default: //scaled_rotation.rotation = scaled_rotation rotation = scaled_rotation.rot_center * scaled_rotation.rotation; break; // camera case 1: rotation = scaled_rotation.rotation * scaled_rotation.rot_center; break; // alternative camera case 2: rmat cy, cp, cr; tait_bryan_to_matrices(rmat_to_euler(scaled_rotation.rotation), cr, cp, cy); rmat ry = cy * scaled_rotation.center_yaw.t(); rmat rp = cp * scaled_rotation.center_pitch.t(); rmat rr = cr * scaled_rotation.center_roll.t(); // roll yaw pitch rotation = rr * ry * rp; break; } const euler_t rot = r2d * c_mult * rmat_to_euler(rotation); euler_t pos = euler_t(&value[TX]) - t_center; if (s.use_camera_offset_from_centering) t_compensate(real_rotation.rot_center.t() * real_rotation.camera.t(), pos, pos, false); else t_compensate(real_rotation.camera.t(), pos, pos, false); for (int i = 0; i < 3; i++) { value(i) = pos(i); value(i+3) = rot(i); } } logger.write_pose(value); // "corrected" - after various transformations to account for camera position // whenever something can corrupt its internal state due to nan/inf, elide the call if (is_nan(value)) { nanp = true; logger.write_pose(value); // "filtered" } else { Pose tmp(value); if (libs.pFilter) libs.pFilter->filter(tmp, value); logger.write_pose(value); // "filtered" // CAVEAT rotation only, due to tcomp for (int i = 3; i < 6; i++) value(i) = map(value(i), m(i)); for (int i = 0; i < 6; i++) value(i) += m(i).opts.zero; if (get(f_zero)) for (int i = 0; i < 6; i++) value(i) = 0; if (is_nan(value)) nanp = true; } if (s.tcomp_p && !get(f_tcomp_disabled)) { euler_t value_(value(TX), value(TY), value(TZ)); t_compensate(euler_to_rmat(euler_t(value(Yaw) * d2r, value(Pitch) * d2r, value(Roll) * d2r)), value_, value_, s.tcomp_tz); if (is_nan(value_)) nanp = true; for (int i = 0; i < 3; i++) value(i) = value_(i); } // CAVEAT translation only, due to tcomp for (int i = 0; i < 3; i++) value(i) = map(value(i), m(i)); for (int i = 0; i < 6; i++) value(i) *= int(m(i).opts.invert) * -2 + 1; logger.write_pose(value); // "mapped" if (nanp) { value = last_mapped; // for widget last value display for (int i = 0; i < 6; i++) (void) map(value(i), m(i)); } libs.pProtocol->pose(value); last_mapped = value; last_raw = raw; QMutexLocker foo(&mtx); output_pose = value; raw_6dof = raw; logger.reset_dt(); logger.next_line(); } void Tracker::run() { #if defined(_WIN32) (void) timeBeginPeriod(1); #endif setPriority(QThread::HighPriority); { static constexpr const char* posechannels[6] = { "TX", "TY", "TZ", "Yaw", "Pitch", "Roll" }; static constexpr const char* datachannels[5] = { "dt", "raw", "corrected", "filtered", "mapped" }; logger.write(datachannels[0]); char buffer[128]; for (unsigned j = 1; j < 5; ++j) { for (unsigned i = 0; i < 6; ++i) { std::sprintf(buffer, "%s%s", datachannels[j], posechannels[i]); logger.write(buffer); } } logger.next_line(); } t.start(); logger.reset_dt(); while (!get(f_should_quit)) { Pose tmp; libs.pTracker->data(tmp); if (get(f_enabled)) for (int i = 0; i < 6; i++) newpose[i] = elide_nan(tmp(i), newpose(i)); logic(); static constexpr long const_sleep_us = 4000; using std::max; using std::min; const long elapsed_usecs = t.elapsed_usecs(); const long sleep_us = const_sleep_us * 2 - elapsed_usecs; const unsigned sleep_time = unsigned(max(1l, min(const_sleep_us * 4, max(1l, (sleep_us + 200l)/1000l)))); t.start(); portable::sleep(unsigned(max(1u, sleep_time))); } { // filter may inhibit exact origin Pose p; libs.pProtocol->pose(p); } #if defined(_WIN32) (void) timeEndPeriod(1); #endif for (int i = 0; i < 6; i++) { m(i).spline_main.setTrackingActive(false); m(i).spline_alt.setTrackingActive(false); } } void Tracker::get_raw_and_mapped_poses(double* mapped, double* raw) const { QMutexLocker foo(&const_cast(*this).mtx); for (int i = 0; i < 6; i++) { raw[i] = raw_6dof(i); mapped[i] = output_pose(i); } }