/* Copyright (c) 2014-2015, Stanislaw Halik * Permission to use, copy, modify, and/or distribute this * software for any purpose with or without fee is hereby granted, * provided that the above copyright notice and this permission * notice appear in all copies. */ #pragma once #include #include #include #include namespace { // last param to fool SFINAE into overloading template struct equals { enum { value = i == j }; }; template struct maybe_add_swizzle { enum { value = (i == 1 || j == 1) && (i >= min || j >= min) }; }; template struct is_vector_pair { enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) }; }; template struct vector_len { enum { value = i > j ? i : j }; }; template struct is_dim3 { enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) }; enum { P = a == 1 ? 1 : 3 }; enum { Q = a == 1 ? 3 : 1 }; }; template struct assignable; template struct assignable { enum { value = true }; }; template struct assignable { enum { value = std::is_assignable::value && assignable::value }; }; template struct is_arglist_correct { enum { value = h * w == sizeof...(ts) && assignable::value }; }; } template class Mat { num data[h_][w_]; static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions"); Mat(std::initializer_list&& xs) = delete; public: // parameters w_ and h_ are rebound so that SFINAE occurs // removing them causes a compile-time error -sh 20150811 template typename std::enable_if::value, num>::type inline operator()(int i) const { return data[i][0]; } template typename std::enable_if::value, num>::type inline operator()(int i) const { return data[0][i]; } template typename std::enable_if::value, num&>::type inline operator()(int i) { return data[i][0]; } template typename std::enable_if::value, num&>::type inline operator()(int i) { return data[0][i]; } template typename std::enable_if::value, num>::type inline x() const { return operator()(0); } template typename std::enable_if::value, num>::type inline y() const { return operator()(1); } template typename std::enable_if::value, num>::type inline z() const { return operator()(2); } template typename std::enable_if::value, num>::type inline w() const { return operator()(3); } template typename std::enable_if::value, num&>::type inline x() { return operator()(0); } template typename std::enable_if::value, num&>::type inline y() { return operator()(1); } template typename std::enable_if::value, num&>::type inline z() { return operator()(2); } template typename std::enable_if::value, num&>::type inline w() { return operator()(3); } template typename std::enable_if::value, num>::type dot(const Mat& p2) const { num ret = 0; constexpr int len = vector_len::value; for (int i = 0; i < len; i++) ret += operator()(i) * p2(i); return ret; } template typename std::enable_if::value, Mat::P, is_dim3::Q>>::type cross(const Mat& p2) const { return Mat(y() * p2.z() - p2.y() * z(), p2.x() * z() - x() * p2.z(), x() * p2.y() - y() * p2.x()); } Mat operator+(const Mat& other) const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] + other.data[j][i]; return ret; } Mat operator-(const Mat& other) const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] - other.data[j][i]; return ret; } Mat operator+(const num& other) const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] + other; return ret; } Mat operator-(const num& other) const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] - other; return ret; } Mat operator*(const num& other) const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret(j, i) = data[j][i] * other; return ret; } template Mat operator*(const Mat& other) const { Mat ret; for (int j = 0; j < w_; j++) for (int i = 0; i < p; i++) { num sum = num(0); for (int k = 0; k < h_; k++) sum += data[j][k]*other(k, i); ret(j, i) = sum; } return ret; } inline num operator()(int j, int i) const { return data[j][i]; } inline num& operator()(int j, int i) { return data[j][i]; } template::value>> Mat(ts const&... xs) { const std::initializer_list init = { static_cast(xs)... }; auto iter = init.begin(); for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = *iter++; } template Mat(const t* xs) { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = num(*xs++); } Mat() { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = num(0); } Mat(const num* mem) { for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) data[j][i] = mem[i*h_+j]; } Mat(num* mem) : Mat(const_cast(mem)) {} // XXX add more operators as needed, third-party dependencies mostly // not needed merely for matrix algebra -sh 20141030 static Mat eye() { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret.data[j][i] = 0; for (int i = 0; i < h_; i++) ret.data[i][i] = 1; return ret; } Mat t() const { Mat ret; for (int j = 0; j < h_; j++) for (int i = 0; i < w_; i++) ret.data[i][j] = data[j][i]; return ret; } template using dmat = Mat; // http://stackoverflow.com/a/18436193 static dmat<3, 1> rmat_to_euler(const dmat<3, 3>& R) { static constexpr double pi = 3.141592653; const double pitch_1 = asin(-R(0, 2)); const double pitch_2 = pi - pitch_1; const double cos_p1 = cos(pitch_1), cos_p2 = cos(pitch_2); const double roll_1 = atan2(R(1, 2) / cos_p1, R(2, 2) / cos_p1); const double roll_2 = atan2(R(1, 2) / cos_p2, R(2, 2) / cos_p2); const double yaw_1 = atan2(R(0, 1) / cos_p1, R(0, 0) / cos_p1); const double yaw_2 = atan2(R(0, 1) / cos_p2, R(0, 0) / cos_p2); if (std::abs(pitch_1) + std::abs(roll_1) + std::abs(yaw_1) > std::abs(pitch_2) + std::abs(roll_2) + std::abs(yaw_2)) { bool fix_neg_pitch = pitch_1 < 0; return dmat<3, 1>(yaw_2, std::fmod(fix_neg_pitch ? -pi - pitch_1 : pitch_2, pi), roll_2); } else return dmat<3, 1>(yaw_1, pitch_1, roll_1); } // tait-bryan angles, not euler static dmat<3, 3> euler_to_rmat(const double* input) { static constexpr double pi = 3.141592653; auto H = input[0] * pi / 180; auto P = input[1] * pi / 180; auto B = input[2] * pi / 180; const auto c1 = cos(H); const auto s1 = sin(H); const auto c2 = cos(P); const auto s2 = sin(P); const auto c3 = cos(B); const auto s3 = sin(B); double foo[] = { // z c1 * c2, c1 * s2 * s3 - c3 * s1, s1 * s3 + c1 * c3 * s2, // y c2 * s1, c1 * c3 + s1 * s2 * s3, c3 * s1 * s2 - c1 * s3, // x -s2, c2 * s3, c2 * c3 }; return dmat<3, 3>(foo); } }; template using dmat = Mat;