/* Copyright (c) 2012-2016, Stanislaw Halik * Permission to use, copy, modify, and/or distribute this * software for any purpose with or without fee is hereby granted, * provided that the above copyright notice and this permission * notice appear in all copies. */ #include "spline.hpp" #include "compat/math.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace spline_detail; spline::spline(const QString& name, const QString& axis_name, Axis axis) { set_bundle(options::make_bundle(name), axis_name, axis); } spline::~spline() { QMutexLocker l(&_mutex); disconnect_signals(); } spline::spline() : spline(QString{}, QString{}, Axis(-1)) {} void spline::set_tracking_active(bool value) { QMutexLocker l(&_mutex); activep = value; } bundle spline::get_bundle() { QMutexLocker l(&_mutex); // avoid logic errors due to changes in value data return s->b; } void spline::clear() { QMutexLocker l(&_mutex); s->points = points_t(); // XXX TODO check invalidate points = points_t(); validp = false; } float spline::get_value(double x) { QMutexLocker foo(&_mutex); const float ret = get_value_no_save(x); last_input_value.setX(std::fabs(x)); last_input_value.setY(double(std::fabs(ret))); return ret; } float spline::get_value_no_save(double x) const { return const_cast(*this).get_value_no_save_internal(x); } float spline::get_value_no_save_internal(double x) { QMutexLocker foo(&_mutex); float q = float(x * bucket_size_coefficient(points)); int xi = (int)q; float yi = get_value_internal(xi); float yiplus1 = get_value_internal(xi+1); float f = (q-xi); float ret = yiplus1 * f + yi * (1.0f - f); // at least do a linear interpolation. return ret; } bool spline::get_last_value(QPointF& point) { QMutexLocker foo(&_mutex); point = last_input_value; return activep; } float spline::get_value_internal(int x) { if (!validp) { update_interp_data(); validp = true; } const float sign = signum(x); x = std::abs(x); const float ret_ = data[std::min(unsigned(x), unsigned(value_count)-1u)]; return sign * clamp(ret_, 0, 1000); } void spline::add_lone_point() { points = { QPointF(s->opts.clamp_x_, s->opts.clamp_y_) }; s->points = points; } QPointF spline::ensure_in_bounds(const QList& points, int i) { const int sz = points.size(); if (i < 0 || sz == 0) return {}; if (i < sz) return points[i]; return points[sz - 1]; } int spline::element_count(const QList& points, double max_input) { const unsigned sz = points.size(); for (unsigned k = 0; k < sz; k++) { const QPointF& pt = points[k]; if (max_input > 1e-4 && pt.x() - 1e-2 > max_input) return k; } return sz; } bool spline::sort_fn(const QPointF& one, const QPointF& two) { return one.x() < two.x(); } void spline::update_interp_data() { points_t list = points; ensure_valid(list); const int sz = list.size(); const double maxx = max_input(); if (list.isEmpty()) list.prepend({ maxx, max_output() }); const double c = bucket_size_coefficient(list); const double c_interp = c * 30; enum { magic_fill_value = -255 }; for (unsigned i = 0; i < value_count; i++) data[i] = magic_fill_value; if (sz < 2) // lerp only { const QPointF& pt = list[0]; const double x = pt.x(); const double y = pt.y(); const unsigned max = clamp(uround(x * c), 0, value_count-2); for (unsigned k = 0; k <= max; k++) data[k] = float(y * k / max); // no need for bresenham } else { if (list[0].x() > 1e-2 && list[0].x() <= maxx) list.push_front(QPointF(0, 0)); // now this is hella expensive due to `c_interp' for (int i = 0; i < sz; i++) { const QPointF p0 = ensure_in_bounds(list, i - 1); const QPointF p1 = ensure_in_bounds(list, i + 0); const QPointF p2 = ensure_in_bounds(list, i + 1); const QPointF p3 = ensure_in_bounds(list, i + 2); const double p0_x = p0.x(), p1_x = p1.x(), p2_x = p2.x(), p3_x = p3.x(); const double p0_y = p0.y(), p1_y = p1.y(), p2_y = p2.y(), p3_y = p3.y(); const double cx[4] = { 2 * p1_x, // 1 -p0_x + p2_x, // t 2 * p0_x - 5 * p1_x + 4 * p2_x - p3_x, // t^2 -p0_x + 3 * p1_x - 3 * p2_x + p3_x, // t3 }; const double cy[4] = { 2 * p1_y, // 1 -p0_y + p2_y, // t 2 * p0_y - 5 * p1_y + 4 * p2_y - p3_y, // t^2 -p0_y + 3 * p1_y - 3 * p2_y + p3_y, // t3 }; // multiplier helps fill in all the x's needed const unsigned end = int(c_interp * (p2_x - p1_x)) + 1; for (unsigned k = 0; k <= end; k++) { const double t = k / double(end); const double t2 = t*t; const double t3 = t*t*t; const int x = int(.5 * c * (cx[0] + cx[1] * t + cx[2] * t2 + cx[3] * t3)); const float y = float(.5 * (cy[0] + cy[1] * t + cy[2] * t2 + cy[3] * t3)); if (unsigned(x) < value_count) data[x] = y; } } } double maxy = max_output(); float last = 0; for (unsigned i = 0; i < unsigned(value_count); i++) { if (data[i] == magic_fill_value) data[i] = last; data[i] = (float)clamp(data[i], 0, maxy); last = data[i]; } } void spline::remove_point(int i) { QMutexLocker foo(&_mutex); const int sz = element_count(points, max_input()); if (i >= 0 && i < sz) { points.erase(points.begin() + i); s->points = points; validp = false; } } void spline::add_point(QPointF pt) { QMutexLocker foo(&_mutex); points.push_back(pt); std::stable_sort(points.begin(), points.end(), sort_fn); s->points = points; validp = false; } void spline::add_point(double x, double y) { add_point(QPointF(x, y)); } void spline::move_point(int idx, QPointF pt) { QMutexLocker foo(&_mutex); const int sz = element_count(points, max_input()); if (idx >= 0 && idx < sz) { points[idx] = pt; std::stable_sort(points.begin(), points.end(), sort_fn); s->points = points; validp = false; } } const base_spline_::points_t& spline::get_points() const { QMutexLocker foo(&_mutex); return points; } int spline::get_point_count() const { QMutexLocker foo(&_mutex); return element_count(points, s->opts.clamp_x_); } void spline::reload() { QMutexLocker foo(&_mutex); s->b->reload(); } void spline::save() { QMutexLocker foo(&_mutex); s->b->save(); } void spline::invalidate_settings() { // we're holding the mutex to allow signal disconnection in spline dtor // before this slot gets called for the next time { QMutexLocker l(&_mutex); validp = false; points = s->points; } emit s->recomputed(); } void spline::set_bundle(bundle b, const QString& axis_name, Axis axis) { QMutexLocker l(&_mutex); // gets called from ctor hence the need for nullptr checks // the sentinel settings/bundle objects don't need any further branching once created if (!s || s->b != b) { disconnect_signals(); if (!b) b = make_bundle(QString{}); s = std::make_shared(b, axis_name, axis); conn_changed = QObject::connect(b.get(), &bundle_::changed, s.get(), [&] { invalidate_settings(); }, Qt::QueuedConnection); // this isn't strictly necessary for the spline but helps the widget conn_maxx = QObject::connect(&s->opts.clamp_x_, value_::value_changed(), ctx.get(), [&](double) { invalidate_settings(); }, Qt::QueuedConnection); conn_maxy = QObject::connect(&s->opts.clamp_y_, value_::value_changed(), ctx.get(), [&](double) { invalidate_settings(); }, Qt::QueuedConnection); invalidate_settings(); } } double spline::max_input() const { QMutexLocker l(&_mutex); using m = axis_opts::max_clamp; const value& clamp = s->opts.clamp_x_; if (clamp == m::x1000 && !points.empty()) return points[points.size() - 1].x(); return std::fabs(clamp.to()); } double spline::max_output() const { QMutexLocker l(&_mutex); using m = axis_opts::max_clamp; const value& clamp = s->opts.clamp_y_; if (clamp == m::x1000 && !points.empty()) return points[points.size() - 1].y(); return std::fabs(clamp.to()); } void spline::ensure_valid(points_t& list) { QMutexLocker foo(&_mutex); // storing to s->points fires bundle::changed and that leads to an infinite loop // thus, only store if we can't help it std::stable_sort(list.begin(), list.end(), sort_fn); const int sz = list.size(); QList all_points, tmp; all_points.reserve(sz), tmp.reserve(sz); const double maxx = max_input(), maxy = max_output(); for (int i = 0; i < sz; i++) { QPointF& pt{list[i]}; bool overlap = false; for (int j = i+1; j < sz; j++) { const QPointF& pt2{list[j]}; const QPointF tmp(pt - pt2); const double dist_sq = QPointF::dotProduct(tmp, tmp); constexpr double min_dist = 1e-4; if (dist_sq < min_dist) { overlap = true; break; } } if (!overlap) { tmp.append(pt); // all points total // points within selected limit, for use in `update_interp_data' if (pt.x() - 1e-4 <= maxx && pt.x() >= 0) all_points.push_back(pt); } } // size check guards against livelock with value/bundle_ signals // points that are within bounds if (tmp.size() < points.size()) { points = std::move(tmp); // can't stuff there unconditionally // fires signals from `value' and `bundle_' otherwise s->points = points; } if (all_points.size() < list.size()) // all points that don't overlap, after clamping list = std::move(all_points); last_input_value = {}; activep = false; } // the return value is only safe to use with no spline::set_bundle calls std::shared_ptr spline::get_settings() { QMutexLocker foo(&_mutex); return std::static_pointer_cast(s); } std::shared_ptr spline::get_settings() const { QMutexLocker foo(&_mutex); return std::static_pointer_cast(s); } double spline::bucket_size_coefficient(const QList& points) const { constexpr double eps = 1e-4; const double maxx = max_input(); if (maxx < eps) return 0; // needed to fill the buckets up to the last control point. // space between that point and max_x doesn't matter. const int sz = element_count(points, maxx); const double last_x = sz ? points[sz - 1].x() : maxx; return clamp((value_count-1) / clamp(last_x, eps, maxx), 0., (value_count-1)); } void spline::disconnect_signals() { if (conn_changed) { QObject::disconnect(conn_changed); QObject::disconnect(conn_maxx); QObject::disconnect(conn_maxy); conn_changed = {}; conn_maxx = {}; conn_maxy = {}; } } namespace spline_detail { settings::settings(bundle const& b, const QString& axis_name, Axis idx): b(b ? b : make_bundle("")), opts(axis_name, idx) {} settings::~settings() = default; }