/* Copyright (c) 2012-2016, Stanislaw Halik * Permission to use, copy, modify, and/or distribute this * software for any purpose with or without fee is hereby granted, * provided that the above copyright notice and this permission * notice appear in all copies. */ #include "spline.hpp" #include "compat/math.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace spline_detail; spline::spline(const QString& name, const QString& axis_name, Axis axis) { set_bundle(options::make_bundle(name), axis_name, axis); } spline::~spline() { QMutexLocker l(&_mutex); if (connection) { QObject::disconnect(connection); QObject::disconnect(conn_maxx); QObject::disconnect(conn_maxy); connection = QMetaObject::Connection(); conn_maxx = QMetaObject::Connection(); conn_maxy = QMetaObject::Connection(); } } spline::spline() : spline("", "", Axis(-1)) {} void spline::set_tracking_active(bool value) { QMutexLocker l(&_mutex); activep = value; } bundle spline::get_bundle() { QMutexLocker l(&_mutex); // avoid logic errors due to changes in value data return s->b; } void spline::clear() { QMutexLocker l(&_mutex); s->points = points_t(); validp = false; } float spline::get_value(double x) { QMutexLocker foo(&_mutex); const float ret = get_value_no_save(x); last_input_value.setX(std::fabs(x)); last_input_value.setY(double(std::fabs(ret))); return ret; } float spline::get_value_no_save(double x) const { return const_cast(*this).get_value_no_save_internal(x); } float spline::get_value_no_save_internal(double x) { QMutexLocker foo(&_mutex); float q = float(x * bucket_size_coefficient(s->points)); int xi = (int)q; float yi = get_value_internal(xi); float yiplus1 = get_value_internal(xi+1); float f = (q-xi); float ret = yiplus1 * f + yi * (1.0f - f); // at least do a linear interpolation. return ret; } warn_result_unused bool spline::get_last_value(QPointF& point) { QMutexLocker foo(&_mutex); point = last_input_value; return activep; } float spline::get_value_internal(int x) { if (!validp) { update_interp_data(); validp = true; } const float sign = signum(x); x = std::abs(x); const float ret_ = data[std::min(unsigned(x), unsigned(value_count)-1u)]; return sign * clamp(ret_, 0, 1000); } void spline::add_lone_point() { points_t points; points.push_back(QPointF(s->opts.clamp_x_, s->opts.clamp_y_)); s->points = points; } QPointF spline::ensure_in_bounds(const QList& points, int i) { const int sz = points.size(); if (i < 0 || sz == 0) return QPointF(0, 0); if (i < sz) return points[i]; return points[sz - 1]; } int spline::element_count(const QList& points, double max_input) { const unsigned sz = points.size(); for (unsigned k = 0; k < sz; k++) { const QPointF& pt = points[k]; if (max_input > 1e-4 && pt.x() - 1e-2 > max_input) return k; } return sz; } bool spline::sort_fn(const QPointF& one, const QPointF& two) { return one.x() < two.x(); } void spline::update_interp_data() { points_t points = s->points; ensure_valid(points); const int sz = points.size(); const double maxx = max_input(); if (sz == 0) points.prepend(QPointF(maxx, max_output())); std::stable_sort(points.begin(), points.begin() + sz, sort_fn); const double c = bucket_size_coefficient(points); const double c_interp = c * 30; for (unsigned i = 0; i < value_count; i++) data[i] = -16; if (sz < 2) { if (points[0].x() - 1e-2 < maxx) { const double x = points[0].x(); const double y = points[0].y(); const unsigned max = (unsigned)clamp(iround(x * c), 1, value_count-1); for (unsigned k = 0; k <= max; k++) { if (k < value_count) data[unsigned(k)] = float(y * k / max); } } } else { if (points[0].x() > 1e-2 && points[0].x() <= maxx) points.push_front(QPointF(0, 0)); for (int i = 0; i < sz; i++) { const QPointF p0 = ensure_in_bounds(points, i - 1); const QPointF p1 = ensure_in_bounds(points, i + 0); const QPointF p2 = ensure_in_bounds(points, i + 1); const QPointF p3 = ensure_in_bounds(points, i + 2); const double p0_x = p0.x(), p1_x = p1.x(), p2_x = p2.x(), p3_x = p3.x(); const double p0_y = p0.y(), p1_y = p1.y(), p2_y = p2.y(), p3_y = p3.y(); const double cx[4] = { 2 * p1_x, // 1 -p0_x + p2_x, // t 2 * p0_x - 5 * p1_x + 4 * p2_x - p3_x, // t^2 -p0_x + 3 * p1_x - 3 * p2_x + p3_x, // t3 }; const double cy[4] = { 2 * p1_y, // 1 -p0_y + p2_y, // t 2 * p0_y - 5 * p1_y + 4 * p2_y - p3_y, // t^2 -p0_y + 3 * p1_y - 3 * p2_y + p3_y, // t3 }; // multiplier helps fill in all the x's needed const unsigned end = int(c_interp * (p2_x - p1_x)) + 1; for (unsigned k = 0; k <= end; k++) { const double t = k / double(end); const double t2 = t*t; const double t3 = t*t*t; const int x = int(.5 * c * (cx[0] + cx[1] * t + cx[2] * t2 + cx[3] * t3)); const float y = float(.5 * (cy[0] + cy[1] * t + cy[2] * t2 + cy[3] * t3)); if (unsigned(x) < value_count) data[x] = y; } } } float last = 0; for (unsigned i = 0; i < unsigned(value_count); i++) { if (data[i] == -16) data[i] = last; last = data[i]; } } void spline::remove_point(int i) { QMutexLocker foo(&_mutex); points_t points = s->points; const int sz = element_count(points, max_input()); if (i >= 0 && i < sz) { points.erase(points.begin() + i); s->points = points; validp = false; } } void spline::add_point(QPointF pt) { QMutexLocker foo(&_mutex); points_t points = s->points; points.push_back(pt); std::stable_sort(points.begin(), points.end(), sort_fn); s->points = points; validp = false; } void spline::add_point(double x, double y) { add_point(QPointF(x, y)); } void spline::move_point(int idx, QPointF pt) { QMutexLocker foo(&_mutex); points_t points = s->points; const int sz = element_count(points, max_input()); if (idx >= 0 && idx < sz) { points[idx] = pt; // we don't allow points to be reordered, but sort due to possible caller logic error std::stable_sort(points.begin(), points.end(), sort_fn); s->points = points; validp = false; } } spline::points_t spline::get_points() const { QMutexLocker foo(&_mutex); return s->points; } int spline::get_point_count() const { QMutexLocker foo(&_mutex); return element_count(s->points, s->opts.clamp_x_); } void spline::reload() { QMutexLocker foo(&_mutex); s->b->reload(); } void spline::save() { QMutexLocker foo(&_mutex); s->b->save(); } void spline::invalidate_settings() { // we're holding the mutex to allow signal disconnection in spline dtor // before this slot gets called for the next time QMutexLocker l(&_mutex); validp = false; emit s->recomputed(); } void spline::set_bundle(bundle b, const QString& axis_name, Axis axis) { QMutexLocker l(&_mutex); // gets called from ctor hence the need for nullptr checks // the sentinel settings/bundle objects don't need any further branching once created if (!s || s->b != b) { s = std::make_shared(b, axis_name, axis); if (connection) { QObject::disconnect(connection); QObject::disconnect(conn_maxx); QObject::disconnect(conn_maxy); } if (b) { connection = QObject::connect(b.get(), &bundle_::changed, s.get(), [&]() { invalidate_settings(); }); // this isn't strictly necessary for the spline but helps the widget conn_maxx = QObject::connect(&s->opts.clamp_x_, base_value::value_changed(), ctx.get(), [&](double) { invalidate_settings(); }); conn_maxy = QObject::connect(&s->opts.clamp_y_, base_value::value_changed(), ctx.get(), [&](double) { invalidate_settings(); }); } validp = false; } } double spline::max_input() const { QMutexLocker l(&_mutex); if (s) { using m = axis_opts::max_clamp; const value& clamp = s->opts.clamp_x_; const QList points = s->points; if (clamp == m::x1000 && points.size()) return points[points.size() - 1].x(); return s ? std::fabs(clamp.to()) : 0; } return 0; } double spline::max_output() const { QMutexLocker l(&_mutex); if (s) { using m = axis_opts::max_clamp; const value& clamp = s->opts.clamp_y_; const QList points = s->points; if (clamp == m::x1000 && points.size()) return points[points.size() - 1].y(); return s ? std::fabs(clamp.to()) : 0; } return 0; } void spline::ensure_valid(QList& the_points) { QMutexLocker foo(&_mutex); QList list = the_points; // storing to s->points fires bundle::changed and that leads to an infinite loop // thus, only store if we can't help it std::stable_sort(list.begin(), list.end(), sort_fn); const int sz = list.size(); QList ret_list, ret_list_2; ret_list.reserve(sz), ret_list_2.reserve(sz); const double maxx = max_input(), maxy = max_output(); for (int i = 0; i < sz; i++) { QPointF& pt(list[i]); const bool overlap = progn( for (int j = 0; j < i; j++) { const QPointF& pt2(list[j]); const QPointF tmp(pt - pt2); const double dist_sq = QPointF::dotProduct(tmp, tmp); const double overlap = maxx / 500.; if (dist_sq < overlap * overlap) return true; } return false; ); if (!overlap) ret_list_2.append(pt); if (pt.x() - 1e-2 < maxx && pt.x() >= 0 && pt.y() - 1e-2 < maxy && pt.y() >= 0 && !overlap) { ret_list.push_back(pt); } } if (ret_list != the_points) { s->points = std::move(ret_list_2); the_points = std::move(ret_list); } last_input_value = QPointF(0, 0); activep = false; } // the return value is only safe to use with no spline::set_bundle calls std::shared_ptr spline::get_settings() { QMutexLocker foo(&_mutex); return std::static_pointer_cast(s); } std::shared_ptr spline::get_settings() const { QMutexLocker foo(&_mutex); return std::static_pointer_cast(s); } double spline::bucket_size_coefficient(const QList& points) const { constexpr double eps = 1e-4; const double maxx = max_input(); if (maxx < eps) return 0; // needed to fill the buckets up to the last control point. // space between that point and max_x doesn't matter. const int sz = element_count(points, maxx); const double last_x = sz ? points[sz - 1].x() : maxx; return clamp((value_count-1) / clamp(last_x, eps, maxx), 0., (value_count-1)); } namespace spline_detail { settings::settings(bundle b, const QString& axis_name, Axis idx): b(b ? b : make_bundle("")), points(b, "points", {}), opts(axis_name, idx) {} settings::~settings() { } }