/* Copyright (c) 2021 Michael Welter * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "ftnoir_tracker_neuralnet.h" #include "compat/sleep.hpp" #include "compat/math-imports.hpp" #include "cv/init.hpp" #include #include #include #include #include #include "compat/timer.hpp" #include #ifdef _MSC_VER # pragma warning(disable : 4702) #endif #include #include #include #include #include #include #include // Some demo code for onnx // https://github.com/microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp // https://github.com/leimao/ONNX-Runtime-Inference/blob/main/src/inference.cpp namespace { using numeric_types::vec3; using numeric_types::vec2; using numeric_types::mat33; // Minimal difference if at all going from 1 to 2 threads. static constexpr int num_threads = 1; #if _MSC_VER std::wstring convert(const QString &s) { return s.toStdWString(); } #else std::string convert(const QString &s) { return s.toStdString(); } #endif float sigmoid(float x) { return 1.f/(1.f + std::exp(-x)); } template cv::Rect_ squarize(const cv::Rect_ &r) { cv::Point_ c{r.x + r.width/T(2), r.y + r.height/T(2)}; const T sz = std::max(r.height, r.width); return {c.x - sz/T(2), c.y - sz/T(2), sz, sz}; } cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w) { auto unnorm = [](float x) -> float { return 0.5*(x+1); }; auto tl = r.tl(); auto br = r.br(); auto x0 = unnorm(tl.x)*w; auto y0 = unnorm(tl.y)*h; auto x1 = unnorm(br.x)*w; auto y1 = unnorm(br.y)*h; return { x0, y0, x1-x0, y1-y0 }; } cv::Point2f normalize(const cv::Point2f &p, int h, int w) { return { p.x/w*2.f-1.f, p.y/h*2.f-1.f }; } mat33 rotation_from_two_vectors(const vec3 &a, const vec3 &b) { vec3 axis = a.cross(b); const float len_a = cv::norm(a); const float len_b = cv::norm(b); const float len_axis = cv::norm(axis); const float sin_angle = std::clamp(len_axis / (len_a * len_b), -1.f, 1.f); const float angle = std::asin(sin_angle); axis *= angle/(1.e-12 + len_axis); mat33 out; cv::Rodrigues(axis, out); return out; } /* Computes correction due to head being off screen center. x, y: In screen space, i.e. in [-1,1] focal_length_x: In screen space */ mat33 compute_rotation_correction(const cv::Point2f &p, float focal_length_x) { return rotation_from_two_vectors( {1.f,0.f,0.f}, {focal_length_x, p.y, p.x}); } mat33 quaternion_to_mat33(const std::array quat) { mat33 m; const float w = quat[0]; const float i = quat[1]; const float j = quat[2]; const float k = quat[3]; m(0,0) = 1.f - 2.f*(j*j + k*k); m(1,0) = 2.f*(i*j + k*w); m(2,0) = 2.f*(i*k - j*w); m(0,1) = 2.f*(i*j - k*w); m(1,1) = 1.f - 2.f*(i*i + k*k); m(2,1) = 2.f*(j*k + i*w); m(0,2) = 2.f*(i*k + j*w); m(1,2) = 2.f*(j*k - i*w); m(2,2) = 1.f - 2.f*(i*i + j*j); return m; } template T iou(const cv::Rect_ &a, const cv::Rect_ &b) { auto i = a & b; return double{i.area()} / (a.area()+b.area()-i.area()); } } // namespace namespace neuralnet_tracker_ns { int enum_to_fps(int value) { switch (value) { case fps_30: return 30; case fps_60: return 60; default: [[fallthrough]]; case fps_default: return 0; } } Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) : session{std::move(session)}, scaled_frame(input_img_height, input_img_width, CV_8U), input_mat(input_img_height, input_img_width, CV_32F) { // Only works when input_mat does not reallocated memory ...which it should not. // Non-owning memory reference to input_mat? // Note: shape = (bach x channels x h x w) const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width }; input_val = Ort::Value::CreateTensor(allocator_info, input_mat.ptr(0), input_mat.total(), input_shape, 4); const std::int64_t output_shape[2] = { 1, 5 }; output_val = Ort::Value::CreateTensor(allocator_info, results.data(), results.size(), output_shape, 2); } std::pair Localizer::run( const cv::Mat &frame) { auto p = input_mat.ptr(0); cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA); scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5); assert (input_mat.ptr(0) == p); assert (!input_mat.empty() && input_mat.isContinuous()); assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height); const char* input_names[] = {"x"}; const char* output_names[] = {"logit_box"}; Timer t; t.start(); const auto nt = omp_get_num_threads(); omp_set_num_threads(num_threads); session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1); omp_set_num_threads(nt); last_inference_time = t.elapsed_ms(); const cv::Rect2f roi = unnormalize(cv::Rect2f{ results[1], results[2], results[3]-results[1], // Width results[4]-results[2] // Height }, frame.rows, frame.cols); const float score = sigmoid(results[0]); return { score, roi }; } double Localizer::last_inference_time_millis() const { return last_inference_time; } PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session) : session{std::move(session)}, scaled_frame(input_img_height, input_img_width, CV_8U), input_mat(input_img_height, input_img_width, CV_32F) { { const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width }; input_val = Ort::Value::CreateTensor(allocator_info, input_mat.ptr(0), input_mat.total(), input_shape, 4); } { const std::int64_t output_shape[2] = { 1, 3 }; output_val[0] = Ort::Value::CreateTensor( allocator_info, &output_coord[0], output_coord.rows, output_shape, 2); } { const std::int64_t output_shape[2] = { 1, 4 }; output_val[1] = Ort::Value::CreateTensor( allocator_info, &output_quat[0], output_quat.rows, output_shape, 2); } { const std::int64_t output_shape[2] = { 1, 4 }; output_val[2] = Ort::Value::CreateTensor( allocator_info, &output_box[0], output_box.rows, output_shape, 2); } } int PoseEstimator::find_input_intensity_90_pct_quantile() const { const int channels[] = { 0 }; const int hist_size[] = { 255 }; float range[] = { 0, 256 }; const float* ranges[] = { range }; cv::Mat hist; cv::calcHist(&scaled_frame, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false); int gray_level = 0; const int num_pixels_quantile = scaled_frame.total()*0.9f; int num_pixels_accum = 0; for (int i=0; i(i); if (num_pixels_accum > num_pixels_quantile) { gray_level = i; break; } } return gray_level; } std::optional PoseEstimator::run( const cv::Mat &frame, const cv::Rect &box) { cv::Mat cropped; const int patch_size = std::max(box.width, box.height)*1.05; const cv::Point2f patch_center = { std::clamp(box.x + 0.5f*box.width, 0.f, frame.cols), std::clamp(box.y + 0.5f*box.height, 0.f, frame.rows) }; cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped); // Will get failure if patch_center is outside image boundaries. // Have to catch this case. if (cropped.rows != patch_size || cropped.cols != patch_size) return {}; auto p = input_mat.ptr(0); cv::resize(cropped, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA); // Automatic brightness amplification. const int brightness = find_input_intensity_90_pct_quantile(); const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255; const double beta = -0.5; scaled_frame.convertTo(input_mat, CV_32F, alpha, beta); assert (input_mat.ptr(0) == p); assert (!input_mat.empty() && input_mat.isContinuous()); assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height); const char* input_names[] = {"x"}; const char* output_names[] = {"pos_size", "quat", "box"}; Timer t; t.start(); const auto nt = omp_get_num_threads(); omp_set_num_threads(num_threads); session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, output_val, 3); omp_set_num_threads(nt); // FIXME: Execution time fluctuates wildly. 19 to 26 ms. Why??? // The instructions are always the same. Maybe a memory allocation // issue. The ONNX api suggests that tensor are allocated in an // arena. Does that matter? Maybe the issue is something else? last_inference_time = t.elapsed_ms(); // Perform coordinate transformation. // From patch-local normalized in [-1,1] to // frame unnormalized pixel coordinates. const cv::Point2f center = patch_center + (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]}; const float size = patch_size*0.5f*output_coord[2]; // Following Eigen which uses quat components in the order w, x, y, z. const std::array rotation = { output_quat[3], output_quat[0], output_quat[1], output_quat[2] }; const cv::Rect2f outbox = { patch_center.x + (0.5f*patch_size)*output_box[0], patch_center.y + (0.5f*patch_size)*output_box[1], 0.5f*patch_size*(output_box[2]-output_box[0]), 0.5f*patch_size*(output_box[3]-output_box[1]) }; return std::optional({ rotation, outbox, center, size }); } cv::Mat PoseEstimator::last_network_input() const { cv::Mat ret; if (!input_mat.empty()) { input_mat.convertTo(ret, CV_8U, 255., 127.); cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB); } return ret; } double PoseEstimator::last_inference_time_millis() const { return last_inference_time; } bool neuralnet_tracker::detect() { // Note: BGR colors! if (!last_localizer_roi || !last_roi || iou(*last_localizer_roi,*last_roi)<0.25) { auto [p, rect] = localizer->run(grayscale); last_inference_time += localizer->last_inference_time_millis(); if (p > 0.5 || rect.height < 5 || rect.width < 5) { last_localizer_roi = rect; last_roi = rect; } else { last_roi.reset(); last_localizer_roi.reset(); } } if (!last_roi) { draw_gizmos(frame, {}, {}); return false; } auto face = poseestimator->run(grayscale, *last_roi); last_inference_time += poseestimator->last_inference_time_millis(); if (!face) { last_roi.reset(); draw_gizmos(frame, *face, {}); return false; } last_roi = face->box; Affine pose = compute_pose(*face); draw_gizmos(frame, *face, pose); { QMutexLocker lck(&mtx); this->pose_ = pose; } return true; } Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const { const mat33 rot_correction = compute_rotation_correction( normalize(face.center, frame.rows, frame.cols), intrinsics.focal_length_w); const mat33 m = rot_correction * quaternion_to_mat33(face.rotation); /* hhhhhh <- head size (meters) \ | ----------------------- \ | \ \ | | \ | |- tz (meters) ____ <- face.size / width | \ | | | \| |- focal length / ------------------------ */ // Compute the location the network outputs in 3d space. const vec3 face_world_pos = image_to_world(face.center.x, face.center.y, face.size, head_size_mm); // But this is in general not the location of the rotation joint in the neck. // So we need an extra offset. Which we determine by solving // z,y,z-pos = head_joint_loc + R_face * offset const vec3 pos = face_world_pos + m * vec3{ static_cast(s.offset_fwd), static_cast(s.offset_up), static_cast(s.offset_right)}; return { m, pos }; } void neuralnet_tracker::draw_gizmos( cv::Mat frame, const std::optional &face, const Affine& pose) const { if (last_roi) { const int col = 255; cv::rectangle(frame, *last_roi, cv::Scalar(0, col, 0), /*thickness=*/1); } if (last_localizer_roi) { const int col = 255; cv::rectangle(frame, *last_localizer_roi, cv::Scalar(col, 0, 255-col), /*thickness=*/1); } if (face) { if (face->size>=1.f) cv::circle(frame, static_cast(face->center), int(face->size), cv::Scalar(255,255,255), 2); cv::circle(frame, static_cast(face->center), 3, cv::Scalar(255,255,255), -1); auto draw_coord_line = [&](int i, const cv::Scalar& color) { const float vx = -pose.R(2,i); const float vy = -pose.R(1,i); static constexpr float len = 100.f; cv::Point q = face->center + len*cv::Point2f{vx, vy}; cv::line(frame, static_cast(face->center), static_cast(q), color, 2); }; draw_coord_line(0, {0, 0, 255}); draw_coord_line(1, {0, 255, 0}); draw_coord_line(2, {255, 0, 0}); // Draw the computed joint position auto xy = world_to_image(pose.t); cv::circle(frame, cv::Point(xy[0],xy[1]), 5, cv::Scalar(0,0,255), -1); } if (s.show_network_input) { cv::Mat netinput = poseestimator->last_network_input(); if (!netinput.empty()) { const int w = std::min(netinput.cols, frame.cols); const int h = std::min(netinput.rows, frame.rows); cv::Rect roi(0, 0, w, h); netinput(roi).copyTo(frame(roi)); } } char buf[128]; ::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", std::clamp(int(fps), 0, 9999), int(last_inference_time)); cv::putText(frame, buf, cv::Point(10, frame.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1); } neuralnet_tracker::neuralnet_tracker() { opencv_init(); cv::setNumThreads(num_threads); } neuralnet_tracker::~neuralnet_tracker() { requestInterruption(); wait(); // fast start/stop causes breakage portable::sleep(1000); } module_status neuralnet_tracker::start_tracker(QFrame* videoframe) { videoframe->show(); videoWidget = std::make_unique(videoframe); layout = std::make_unique(); layout->setContentsMargins(0, 0, 0, 0); layout->addWidget(&*videoWidget); videoframe->setLayout(&*layout); videoWidget->show(); start(); return status_ok(); } bool neuralnet_tracker::load_and_initialize_model() { const QString localizer_model_path_enc = OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx"; const QString poseestimator_model_path_enc = OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-pose.onnx"; try { env = Ort::Env{ OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "tracker-neuralnet" }; auto opts = Ort::SessionOptions{}; // Do thread settings here do anything? // There is a warning which says to control number of threads via // openmp settings. Which is what we do. omp_set_num_threads directly // before running the inference pass. opts.SetIntraOpNumThreads(num_threads); opts.SetInterOpNumThreads(num_threads); allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); localizer.emplace( allocator_info, Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts}); poseestimator.emplace( allocator_info, Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts}); } catch (const Ort::Exception &e) { qDebug() << "Failed to initialize the neural network models. ONNX error message: " << e.what(); return false; } return true; } bool neuralnet_tracker::open_camera() { int fps = enum_to_fps(s.force_fps); QMutexLocker l(&camera_mtx); camera = video::make_camera(s.camera_name); if (!camera) return false; video::impl::camera::info args {}; args.width = 320; args.height = 240; if (fps) args.fps = fps; args.use_mjpeg = s.use_mjpeg; if (!camera->start(args)) { qDebug() << "neuralnet tracker: can't open camera"; return false; } return true; } void neuralnet_tracker::set_intrinsics() { const int w = grayscale.cols, h = grayscale.rows; const double diag_fov = s.fov * M_PI / 180.; const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w)); const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h)); const double focal_length_w = 1. / tan(.5 * fov_w); const double focal_length_h = 1. / tan(.5 * fov_h); intrinsics.fov_h = fov_h; intrinsics.fov_w = fov_w; intrinsics.focal_length_w = focal_length_w; intrinsics.focal_length_h = focal_length_h; } vec3 neuralnet_tracker::image_to_world(float x, float y, float size, float real_size) const { // Compute the location the network outputs in 3d space. const float xpos = -(intrinsics.focal_length_w * frame.cols * 0.5f) / size * real_size; const float zpos = (x / frame.cols * 2.f - 1.f) * xpos / intrinsics.focal_length_w; const float ypos = (y / frame.rows * 2.f - 1.f) * xpos / intrinsics.focal_length_h; return {xpos, ypos, zpos}; } vec2 neuralnet_tracker::world_to_image(const vec3& pos) const { const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w; const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h; const float x = (xscr+1.)*0.5f*frame.cols; const float y = (yscr+1.)*0.5f*frame.rows; return {x, y}; } void neuralnet_tracker::run() { if (!open_camera()) return; if (!load_and_initialize_model()) return; std::chrono::high_resolution_clock clk; while (!isInterruptionRequested()) { last_inference_time = 0; auto t = clk.now(); { QMutexLocker l(&camera_mtx); auto [ img, res ] = camera->get_frame(); if (!res) { l.unlock(); portable::sleep(100); continue; } auto color = cv::Mat(img.height, img.width, CV_8UC(img.channels), (void*)img.data, img.stride); color.copyTo(frame); switch (img.channels) { case 1: grayscale.create(img.height, img.width, CV_8UC1); color.copyTo(grayscale); break; case 3: cv::cvtColor(color, grayscale, cv::COLOR_BGR2GRAY); break; default: qDebug() << "Can't handle" << img.channels << "color channels"; return; } } set_intrinsics(); detect(); if (frame.rows > 0) videoWidget->update_image(frame); update_fps( std::chrono::duration_cast( clk.now() - t).count()*1.e-3); } } void neuralnet_tracker::update_fps(double dt) { const double alpha = dt/(dt + RC); if (dt > 1e-6) { fps *= 1 - alpha; fps += alpha * 1./dt; } } void neuralnet_tracker::data(double *data) { Affine tmp = [&]() { QMutexLocker lck(&mtx); return pose_; }(); const auto& mx = tmp.R.col(0); const auto& my = tmp.R.col(1); const auto& mz = -tmp.R.col(2); const float yaw = std::atan2(mx(2), mx(0)); const float pitch = -std::atan2(-mx(1), std::sqrt(mx(2)*mx(2)+mx(0)*mx(0))); const float roll = std::atan2(-my(2), mz(2)); { constexpr double rad2deg = 180/M_PI; data[Yaw] = rad2deg * yaw; data[Pitch] = rad2deg * pitch; data[Roll] = rad2deg * roll; // convert to cm data[TX] = -tmp.t[2] * 0.1; data[TY] = tmp.t[1] * 0.1; data[TZ] = -tmp.t[0] * 0.1; } } Affine neuralnet_tracker::pose() { QMutexLocker lck(&mtx); return pose_; } void neuralnet_dialog::make_fps_combobox() { for (int k = 0; k < fps_MAX; k++) { const int hz = enum_to_fps(k); const QString name = (hz == 0) ? tr("Default") : QString::number(hz); ui.cameraFPS->addItem(name, k); } } neuralnet_dialog::neuralnet_dialog() : trans_calib(1, 2) { ui.setupUi(this); make_fps_combobox(); tie_setting(s.force_fps, ui.cameraFPS); for (const auto& str : video::camera_names()) ui.cameraName->addItem(str); tie_setting(s.camera_name, ui.cameraName); tie_setting(s.fov, ui.cameraFOV); tie_setting(s.offset_fwd, ui.tx_spin); tie_setting(s.offset_up, ui.ty_spin); tie_setting(s.offset_right, ui.tz_spin); tie_setting(s.show_network_input, ui.showNetworkInput); tie_setting(s.use_mjpeg, ui.use_mjpeg); connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings())); connect(&s.camera_name, value_::value_changed(), this, &neuralnet_dialog::update_camera_settings_state); update_camera_settings_state(s.camera_name); connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step); calib_timer.setInterval(35); connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool))); } void neuralnet_dialog::doOK() { s.b->save(); close(); } void neuralnet_dialog::doCancel() { close(); } void neuralnet_dialog::camera_settings() { if (tracker) { QMutexLocker l(&tracker->camera_mtx); (void)tracker->camera->show_dialog(); } else (void)video::show_dialog(s.camera_name); } void neuralnet_dialog::update_camera_settings_state(const QString& name) { (void)name; ui.camera_settings->setEnabled(true); } void neuralnet_dialog::register_tracker(ITracker * x) { tracker = static_cast(x); ui.tcalib_button->setEnabled(true); } void neuralnet_dialog::unregister_tracker() { tracker = nullptr; ui.tcalib_button->setEnabled(false); } void neuralnet_dialog::trans_calib_step() { if (tracker) { const Affine X_CM = [&]() { QMutexLocker l(&calibrator_mutex); return tracker->pose(); }(); trans_calib.update(X_CM.R, X_CM.t); auto [_, nsamples] = trans_calib.get_estimate(); constexpr int min_yaw_samples = 15; constexpr int min_pitch_samples = 12; constexpr int min_samples = min_yaw_samples+min_pitch_samples; // Don't bother counting roll samples. Roll calibration is hard enough // that it's a hidden unsupported feature anyway. QString sample_feedback; if (nsamples[0] < min_yaw_samples) sample_feedback = tr("%1 yaw samples. Yaw more to %2 samples for stable calibration.").arg(nsamples[0]).arg(min_yaw_samples); else if (nsamples[1] < min_pitch_samples) sample_feedback = tr("%1 pitch samples. Pitch more to %2 samples for stable calibration.").arg(nsamples[1]).arg(min_pitch_samples); else { const int nsamples_total = nsamples[0] + nsamples[1]; sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples); } ui.sample_count_display->setText(sample_feedback); } else startstop_trans_calib(false); } void neuralnet_dialog::startstop_trans_calib(bool start) { QMutexLocker l(&calibrator_mutex); // FIXME: does not work ... if (start) { qDebug() << "pt: starting translation calibration"; calib_timer.start(); trans_calib.reset(); ui.sample_count_display->setText(QString()); // Tracker must run with zero'ed offset for calibration. s.offset_fwd = 0; s.offset_up = 0; s.offset_right = 0; } else { calib_timer.stop(); qDebug() << "pt: stopping translation calibration"; { auto [tmp, nsamples] = trans_calib.get_estimate(); s.offset_fwd = int(tmp[0]); s.offset_up = int(tmp[1]); s.offset_right = int(tmp[2]); } } ui.tx_spin->setEnabled(!start); ui.ty_spin->setEnabled(!start); ui.tz_spin->setEnabled(!start); if (start) ui.tcalib_button->setText(tr("Stop calibration")); else ui.tcalib_button->setText(tr("Start calibration")); } settings::settings() : opts("neuralnet-tracker") {} } // neuralnet_tracker_ns OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata)