/* Copyright (c) 2021 Michael Welter * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "ftnoir_tracker_neuralnet.h" #include "compat/sleep.hpp" #include "compat/math-imports.hpp" #include "cv/init.hpp" #include #include #include #include #include #include "compat/timer.hpp" #include "compat/check-visible.hpp" #include #ifdef _MSC_VER # pragma warning(disable : 4702) #endif #include #include #include #include #include #include #include #include #include // Some demo code for onnx // https://github.com/microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp // https://github.com/leimao/ONNX-Runtime-Inference/blob/main/src/inference.cpp namespace neuralnet_tracker_ns { using numeric_types::vec3; using numeric_types::vec2; using numeric_types::mat33; using quat = std::array; #if _MSC_VER std::wstring convert(const QString &s) { return s.toStdWString(); } #else std::string convert(const QString &s) { return s.toStdString(); } #endif template struct OnScopeExit { explicit OnScopeExit(F&& f) : f_{ f } {} ~OnScopeExit() noexcept { f_(); } F f_; }; float sigmoid(float x) { return 1.f/(1.f + std::exp(-x)); } cv::Rect make_crop_rect_for_aspect(const cv::Size &size, int aspect_w, int aspect_h) { auto [w, h] = size; if ( w*aspect_h > aspect_w*h ) { // Image is too wide const int new_w = (aspect_w*h)/aspect_h; return cv::Rect((w - new_w)/2, 0, new_w, h); } else { const int new_h = (aspect_h*w)/aspect_w; return cv::Rect(0, (h - new_h)/2, w, new_h); } } cv::Rect make_crop_rect_multiple_of(const cv::Size &size, int multiple) { const int new_w = (size.width / multiple) * multiple; const int new_h = (size.height / multiple) * multiple; return cv::Rect( (size.width-new_w)/2, (size.height-new_h)/2, new_w, new_h ); } template cv::Rect_ squarize(const cv::Rect_ &r) { cv::Point_ c{r.x + r.width/T(2), r.y + r.height/T(2)}; const T sz = std::max(r.height, r.width); return {c.x - sz/T(2), c.y - sz/T(2), sz, sz}; } template cv::Point_ as_point(const cv::Size_& s) { return { s.width, s.height }; } template cv::Size_ as_size(const cv::Point_& p) { return { p.x, p.y }; } template cv::Rect_ expand(const cv::Rect_& r, T factor) { // xnew = l+.5*w - w*f*0.5 = l + .5*(w - new_w) const cv::Size_ new_size = { r.width * factor, r.height * factor }; const cv::Point_ new_tl = r.tl() + (as_point(r.size()) - as_point(new_size)) / T(2); return cv::Rect_(new_tl, new_size); } template cv::Rect_ ewa_filter(const cv::Rect_& last, const cv::Rect_& current, T alpha) { const auto last_center = T(0.5) * (last.tl() + last.br()); const auto cur_center = T(0.5) * (current.tl() + current.br()); const cv::Point_ new_size = as_point(last.size()) + alpha * (as_point(current.size()) - as_point(last.size())); const cv::Point_ new_center = last_center + alpha * (cur_center - last_center); return cv::Rect_(new_center - T(0.5) * new_size, as_size(new_size)); } cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w) { auto unnorm = [](float x) -> float { return 0.5*(x+1); }; auto tl = r.tl(); auto br = r.br(); auto x0 = unnorm(tl.x)*w; auto y0 = unnorm(tl.y)*h; auto x1 = unnorm(br.x)*w; auto y1 = unnorm(br.y)*h; return { x0, y0, x1-x0, y1-y0 }; } cv::Point2f normalize(const cv::Point2f &p, int h, int w) { return { p.x/w*2.f-1.f, p.y/h*2.f-1.f }; } mat33 rotation_from_two_vectors(const vec3 &a, const vec3 &b) { vec3 axis = a.cross(b); const float len_a = cv::norm(a); const float len_b = cv::norm(b); const float len_axis = cv::norm(axis); const float sin_angle = std::clamp(len_axis / (len_a * len_b), -1.f, 1.f); const float angle = std::asin(sin_angle); axis *= angle/(1.e-12 + len_axis); mat33 out; cv::Rodrigues(axis, out); return out; } // Computes correction due to head being off screen center. // x, y: In screen space, i.e. in [-1,1] // focal_length_x: In screen space mat33 compute_rotation_correction(const cv::Point2f &p, float focal_length_x) { return rotation_from_two_vectors( {1.f,0.f,0.f}, {focal_length_x, p.y, p.x}); } mat33 quaternion_to_mat33(const std::array quat) { mat33 m; const float w = quat[0]; const float i = quat[1]; const float j = quat[2]; const float k = quat[3]; m(0,0) = 1.f - 2.f*(j*j + k*k); m(1,0) = 2.f*(i*j + k*w); m(2,0) = 2.f*(i*k - j*w); m(0,1) = 2.f*(i*j - k*w); m(1,1) = 1.f - 2.f*(i*i + k*k); m(2,1) = 2.f*(j*k + i*w); m(0,2) = 2.f*(i*k + j*w); m(1,2) = 2.f*(j*k - i*w); m(2,2) = 1.f - 2.f*(i*i + j*j); return m; } vec3 rotate_vec(const quat& q, const vec3& p) { const float qw = q[0]; const float qi = q[1]; const float qj = q[2]; const float qk = q[3]; const float pi = p[0]; const float pj = p[1]; const float pk = p[2]; const quat tmp{ - qi*pi - qj*pj - qk*pk, qw*pi + qj*pk - qk*pj, qw*pj - qi*pk + qk*pi, qw*pk + qi*pj - qj*pi }; const vec3 out { -tmp[0]*qi + tmp[1]*qw - tmp[2]*qk + tmp[3]*qj, -tmp[0]*qj + tmp[1]*qk + tmp[2]*qw - tmp[3]*qi, -tmp[0]*qk - tmp[1]*qj + tmp[2]*qi + tmp[3]*qw }; return out; } vec3 image_to_world(float x, float y, float size, float reference_size_in_mm, const cv::Size2i& image_size, const CamIntrinsics& intrinsics) { // Compute the location the network outputs in 3d space. const float xpos = -(intrinsics.focal_length_w * image_size.width * 0.5f) / size * reference_size_in_mm; const float zpos = (x / image_size.width * 2.f - 1.f) * xpos / intrinsics.focal_length_w; const float ypos = (y / image_size.height * 2.f - 1.f) * xpos / intrinsics.focal_length_h; return {xpos, ypos, zpos}; } vec2 world_to_image(const vec3& pos, const cv::Size2i& image_size, const CamIntrinsics& intrinsics) { const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w; const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h; const float x = (xscr+1.)*0.5f*image_size.width; const float y = (yscr+1.)*0.5f*image_size.height; return {x, y}; } quat image_to_world(quat q) { std::swap(q[1], q[3]); q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; return q; } quat world_to_image(quat q) { // It's its own inverse. return image_to_world(q); } template T iou(const cv::Rect_ &a, const cv::Rect_ &b) { auto i = a & b; return double{i.area()} / (a.area()+b.area()-i.area()); } // Returns width and height of the input tensor, or throws. // Expects the model to take one tensor as input that must // have the shape B x C x H x W, where B=C=1. cv::Size get_input_image_shape(const Ort::Session &session) { if (session.GetInputCount() < 1) throw std::invalid_argument("Model must take at least one input tensor"); const std::vector shape = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape(); if (shape.size() != 4) throw std::invalid_argument("Model takes the input tensor in the wrong shape"); return { static_cast(shape[3]), static_cast(shape[2]) }; } Ort::Value create_tensor(const Ort::TypeInfo& info, Ort::Allocator& alloc) { const auto shape = info.GetTensorTypeAndShapeInfo().GetShape(); auto t = Ort::Value::CreateTensor( alloc, shape.data(), shape.size()); memset(t.GetTensorMutableData(), 0, sizeof(float)*info.GetTensorTypeAndShapeInfo().GetElementCount()); return t; } int enum_to_fps(int value) { switch (value) { case fps_30: return 30; case fps_60: return 60; default: [[fallthrough]]; case fps_default: return 0; } } Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) : session_{std::move(session)}, scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U), input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F) { // Only works when input_mat does not reallocated memory ...which it should not. // Non-owning memory reference to input_mat? // Note: shape = (bach x channels x h x w) const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH }; input_val_ = Ort::Value::CreateTensor(allocator_info, input_mat_.ptr(0), input_mat_.total(), input_shape, 4); const std::int64_t output_shape[2] = { 1, 5 }; output_val_ = Ort::Value::CreateTensor(allocator_info, results_.data(), results_.size(), output_shape, 2); } std::pair Localizer::run( const cv::Mat &frame) { auto p = input_mat_.ptr(0); cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA); scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5); assert (input_mat_.ptr(0) == p); assert (!input_mat_.empty() && input_mat_.isContinuous()); assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT); const char* input_names[] = {"x"}; const char* output_names[] = {"logit_box"}; Timer t; t.start(); session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1); last_inference_time_ = t.elapsed_ms(); const cv::Rect2f roi = unnormalize(cv::Rect2f{ results_[1], results_[2], results_[3]-results_[1], // Width results_[4]-results_[2] // Height }, frame.rows, frame.cols); const float score = sigmoid(results_[0]); return { score, roi }; } double Localizer::last_inference_time_millis() const { return last_inference_time_; } PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&_session) : model_version_{_session.GetModelMetadata().GetVersion()} , session_{std::move(_session)} , allocator_{session_, allocator_info} { using namespace std::literals::string_literals; if (session_.GetOutputCount() < 2) throw std::runtime_error("Invalid Model: must have at least two outputs"); // WARNING UB .. but still ... // If the model was saved without meta data, it seems the version field is uninitialized. // In that case reading from it is UB. However, we will just get same arbitrary number // which is hopefully different from the numbers used by models where the version is set. // I.e., this is what happended in practice so far. if (model_version_ != 2) model_version_ = 1; const cv::Size input_image_shape = get_input_image_shape(session_); scaled_frame_ = cv::Mat(input_image_shape, CV_8U, cv::Scalar(0)); input_mat_ = cv::Mat(input_image_shape, CV_32F, cv::Scalar(0.f)); { const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width }; input_val_.push_back( Ort::Value::CreateTensor(allocator_info, input_mat_.ptr(0), input_mat_.total(), input_shape, 4)); } { const std::int64_t output_shape[2] = { 1, 3 }; output_val_.push_back(Ort::Value::CreateTensor( allocator_info, &output_coord_[0], output_coord_.rows, output_shape, 2)); } { const std::int64_t output_shape[2] = { 1, 4 }; output_val_.push_back(Ort::Value::CreateTensor( allocator_info, &output_quat_[0], output_quat_.rows, output_shape, 2)); } size_t num_regular_outputs = 2; if (session_.GetOutputCount() >= 3 && "box"s == session_.GetOutputName(2, allocator_)) { const std::int64_t output_shape[2] = { 1, 4 }; output_val_.push_back(Ort::Value::CreateTensor( allocator_info, &output_box_[0], output_box_.rows, output_shape, 2)); ++num_regular_outputs; qDebug() << "Note: Legacy model output for face ROI is currently ignored"; } num_recurrent_states_ = session_.GetInputCount()-1; if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_) throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers."); // Create tensors for recurrent state for (size_t i = 0; i < num_recurrent_states_; ++i) { const auto& input_info = session_.GetInputTypeInfo(1+i); const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i); if (input_info.GetTensorTypeAndShapeInfo().GetShape() != output_info.GetTensorTypeAndShapeInfo().GetShape()) throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output"); input_val_.push_back(create_tensor(input_info, allocator_)); output_val_.push_back(create_tensor(output_info, allocator_)); } for (size_t i = 0; i < session_.GetInputCount(); ++i) { input_names_.push_back(session_.GetInputName(i, allocator_)); } for (size_t i = 0; i < session_.GetOutputCount(); ++i) { output_names_.push_back(session_.GetOutputName(i, allocator_)); } qDebug() << "Model inputs: " << session_.GetInputCount() << ", outputs: " << session_.GetOutputCount() << ", recurrent states: " << num_recurrent_states_; assert (input_names_.size() == input_val_.size()); assert (output_names_.size() == output_val_.size()); } int PoseEstimator::find_input_intensity_90_pct_quantile() const { const int channels[] = { 0 }; const int hist_size[] = { 255 }; float range[] = { 0, 256 }; const float* ranges[] = { range }; cv::Mat hist; cv::calcHist(&scaled_frame_, 1, channels, cv::Mat(), hist, 1, hist_size, ranges, true, false); int gray_level = 0; const int num_pixels_quantile = scaled_frame_.total()*0.9f; int num_pixels_accum = 0; for (int i=0; i(i); if (num_pixels_accum > num_pixels_quantile) { gray_level = i; break; } } return gray_level; } std::optional PoseEstimator::run( const cv::Mat &frame, const cv::Rect &box) { cv::Mat cropped; const int patch_size = std::max(box.width, box.height)*1.05; const cv::Point2f patch_center = { std::clamp(box.x + 0.5f*box.width, 0.f, frame.cols), std::clamp(box.y + 0.5f*box.height, 0.f, frame.rows) }; cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped); // Will get failure if patch_center is outside image boundariesettings. // Have to catch this case. if (cropped.rows != patch_size || cropped.cols != patch_size) return {}; auto p = input_mat_.ptr(0); cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA); // Automatic brightness amplification. const int brightness = find_input_intensity_90_pct_quantile(); const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255; const double beta = -0.5; scaled_frame_.convertTo(input_mat_, CV_32F, alpha, beta); assert (input_mat_.ptr(0) == p); assert (!input_mat_.empty() && input_mat_.isContinuous()); Timer t; t.start(); try { session_.Run( Ort::RunOptions{ nullptr }, input_names_.data(), input_val_.data(), input_val_.size(), output_names_.data(), output_val_.data(), output_val_.size()); } catch (const Ort::Exception &e) { qDebug() << "Failed to run the model: " << e.what(); return {}; } for (size_t i = 0; i({ rotation, outbox, center, size }); } cv::Mat PoseEstimator::last_network_input() const { assert(!input_mat_.empty()); cv::Mat ret; input_mat_.convertTo(ret, CV_8U, 255., 127.); cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB); return ret; } double PoseEstimator::last_inference_time_millis() const { return last_inference_time_; } bool NeuralNetTracker::detect() { double inference_time = 0.; OnScopeExit update_inference_time{ [&]() { QMutexLocker lck{ &stats_mtx_ }; inference_time_ = inference_time; } }; // Note: BGR colors! if (!last_localizer_roi_ || !last_roi_ || iou(*last_localizer_roi_,*last_roi_)<0.25) { auto [p, rect] = localizer_->run(grayscale_); inference_time += localizer_->last_inference_time_millis(); if (p > 0.5 || rect.height < 5 || rect.width < 5) { last_localizer_roi_ = rect; last_roi_ = rect; } else { last_roi_.reset(); last_localizer_roi_.reset(); } } if (!last_roi_) { draw_gizmos({}, {}); return false; } auto face = poseestimator_->run(grayscale_, *last_roi_); inference_time += poseestimator_->last_inference_time_millis(); if (!face) { last_roi_.reset(); draw_gizmos(*face, {}); return false; } { // Here: compute ROI from head size estimate. This helps make the size prediction more // invariant to mouth opening. The tracking can be lost more often at extreme // rotations, depending on the implementation details. The code down here has // been tweaked so that it works pretty well. // In old behaviour ROI is taken from the model outputs const vec3 offset = rotate_vec(face->rotation, vec3{0.f, 0.1f*face->size, face->size*0.3f}); const float halfsize = face->size/float(settings_.roi_zoom); face->box = cv::Rect2f( face->center.x + offset[0] - halfsize, face->center.y + offset[1] - halfsize, halfsize*2.f, halfsize*2.f ); } last_roi_ = ewa_filter(*last_roi_, face->box, float(settings_.roi_filter_alpha)); Affine pose = compute_pose(*face); draw_gizmos(*face, pose); { QMutexLocker lck(&mtx_); this->pose_ = pose; } return true; } void NeuralNetTracker::draw_gizmos( const std::optional &face, const Affine& pose) { if (!is_visible_) return; preview_.draw_gizmos(face, pose, last_roi_, last_localizer_roi_, world_to_image(pose.t, grayscale_.size(), intrinsics_)); if (settings_.show_network_input) { cv::Mat netinput = poseestimator_->last_network_input(); preview_.overlay_netinput(netinput); } //preview_.draw_fps(fps, last_inference_time); } Affine NeuralNetTracker::compute_pose(const PoseEstimator::Face &face) const { // Compute the location the network outputs in 3d space. const mat33 rot_correction = compute_rotation_correction( normalize(face.center, grayscale_.rows, grayscale_.cols), intrinsics_.focal_length_w); const mat33 m = rot_correction * quaternion_to_mat33( image_to_world(face.rotation)); /* hhhhhh <- head size (meters) \ | ----------------------- \ | \ \ | | \ | |- tz (meters) ____ <- face.size / width | \ | | | \| |- focal length / ------------------------ */ const vec3 face_world_pos = image_to_world( face.center.x, face.center.y, face.size, HEAD_SIZE_MM, grayscale_.size(), intrinsics_); // But this is in general not the location of the rotation joint in the neck. // So we need an extra offset. Which we determine by solving // z,y,z-pos = head_joint_loc + R_face * offset const vec3 pos = face_world_pos + m * vec3{ static_cast(settings_.offset_fwd), static_cast(settings_.offset_up), static_cast(settings_.offset_right)}; return { m, pos }; } void Preview::init(const cv_video_widget& widget) { auto [w,h] = widget.preview_size(); preview_size_ = { w, h }; } void Preview::copy_video_frame(const cv::Mat& frame) { cv::Rect roi = make_crop_rect_for_aspect(frame.size(), preview_size_.width, preview_size_.height); cv::resize(frame(roi), preview_image_, preview_size_, 0, 0, cv::INTER_NEAREST); offset_ = { (float)-roi.x, (float)-roi.y }; scale_ = float(preview_image_.cols) / float(roi.width); } void Preview::draw_gizmos( const std::optional &face, const Affine& pose, const std::optional& last_roi, const std::optional& last_localizer_roi, const cv::Point2f& neckjoint_position) { if (preview_image_.empty()) return; if (last_roi) { const int col = 255; cv::rectangle(preview_image_, transform(*last_roi), cv::Scalar(0, col, 0), /*thickness=*/1); } if (last_localizer_roi) { const int col = 255; cv::rectangle(preview_image_, transform(*last_localizer_roi), cv::Scalar(col, 0, 255-col), /*thickness=*/1); } if (face) { if (face->size>=1.f) cv::circle(preview_image_, static_cast(transform(face->center)), int(transform(face->size)), cv::Scalar(255,255,255), 2); cv::circle(preview_image_, static_cast(transform(face->center)), 3, cv::Scalar(255,255,255), -1); auto draw_coord_line = [&](int i, const cv::Scalar& color) { const float vx = -pose.R(2,i); const float vy = -pose.R(1,i); static constexpr float len = 100.f; cv::Point q = face->center + len*cv::Point2f{vx, vy}; cv::line(preview_image_, static_cast(transform(face->center)), static_cast(transform(q)), color, 2); }; draw_coord_line(0, {0, 0, 255}); draw_coord_line(1, {0, 255, 0}); draw_coord_line(2, {255, 0, 0}); // Draw the computed joint position auto xy = transform(neckjoint_position); cv::circle(preview_image_, cv::Point(xy.x,xy.y), 5, cv::Scalar(0,0,255), -1); } } void Preview::overlay_netinput(const cv::Mat& netinput) { if (netinput.empty()) return; const int w = std::min(netinput.cols, preview_image_.cols); const int h = std::min(netinput.rows, preview_image_.rows); cv::Rect roi(0, 0, w, h); netinput(roi).copyTo(preview_image_(roi)); } void Preview::draw_fps(double fps, double last_inference_time) { char buf[128]; ::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", std::clamp(int(fps), 0, 9999), int(last_inference_time)); cv::putText(preview_image_, buf, cv::Point(10, preview_image_.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1); } void Preview::copy_to_widget(cv_video_widget& widget) { if (preview_image_.rows > 0) widget.update_image(preview_image_); } cv::Rect2f Preview::transform(const cv::Rect2f& r) const { return { (r.x - offset_.x)*scale_, (r.y - offset_.y)*scale_, r.width*scale_, r.height*scale_ }; } cv::Point2f Preview::transform(const cv::Point2f& p) const { return { (p.x - offset_.x)*scale_ , (p.y - offset_.y)*scale_ }; } float Preview::transform(float s) const { return s * scale_; } NeuralNetTracker::NeuralNetTracker() { opencv_init(); } NeuralNetTracker::~NeuralNetTracker() { requestInterruption(); wait(); // fast start/stop causes breakage portable::sleep(1000); } module_status NeuralNetTracker::start_tracker(QFrame* videoframe) { videoframe->show(); video_widget_ = std::make_unique(videoframe); layout_ = std::make_unique(); layout_->setContentsMargins(0, 0, 0, 0); layout_->addWidget(&*video_widget_); videoframe->setLayout(&*layout_); video_widget_->show(); num_threads_ = settings_.num_threads; start(); return status_ok(); } bool NeuralNetTracker::load_and_initialize_model() { const QString localizer_model_path_enc = OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx"; const QString poseestimator_model_path_enc = OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-pose.onnx"; try { env_ = Ort::Env{ OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "tracker-neuralnet" }; auto opts = Ort::SessionOptions{}; // Do thread settings here do anything? // There is a warning which says to control number of threads via // openmp settings. Which is what we do. opts.SetIntraOpNumThreads(num_threads_); opts.SetInterOpNumThreads(1); allocator_info_ = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); localizer_.emplace( allocator_info_, Ort::Session{env_, convert(localizer_model_path_enc).c_str(), opts}); poseestimator_.emplace( allocator_info_, Ort::Session{env_, convert(poseestimator_model_path_enc).c_str(), opts}); } catch (const Ort::Exception &e) { qDebug() << "Failed to initialize the neural network models. ONNX error message: " << e.what(); return false; } return true; } bool NeuralNetTracker::open_camera() { int rint = std::clamp(*settings_.resolution, 0, (int)std::size(resolution_choices)-1); resolution_tuple res = resolution_choices[rint]; int fps = enum_to_fps(settings_.force_fps); QMutexLocker l(&camera_mtx_); camera_ = video::make_camera(settings_.camera_name); if (!camera_) return false; video::impl::camera::info args {}; if (res.width) { args.width = res.width; args.height = res.height; } if (fps) args.fps = fps; args.use_mjpeg = settings_.use_mjpeg; if (!camera_->start(args)) { qDebug() << "neuralnet tracker: can't open camera"; return false; } return true; } void NeuralNetTracker::set_intrinsics() { const int w = grayscale_.cols, h = grayscale_.rows; const double diag_fov = settings_.fov * M_PI / 180.; const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w)); const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h)); const double focal_length_w = 1. / tan(.5 * fov_w); const double focal_length_h = 1. / tan(.5 * fov_h); intrinsics_.fov_h = fov_h; intrinsics_.fov_w = fov_w; intrinsics_.focal_length_w = focal_length_w; intrinsics_.focal_length_h = focal_length_h; } class GuardedThreadCountSwitch { int old_num_threads_cv_ = 1; int old_num_threads_omp_ = 1; public: GuardedThreadCountSwitch(int num_threads) { old_num_threads_cv_ = cv::getNumThreads(); old_num_threads_omp_ = omp_get_num_threads(); omp_set_num_threads(num_threads); cv::setNumThreads(num_threads); } ~GuardedThreadCountSwitch() { omp_set_num_threads(old_num_threads_omp_); cv::setNumThreads(old_num_threads_cv_); } GuardedThreadCountSwitch(const GuardedThreadCountSwitch&) = delete; GuardedThreadCountSwitch& operator=(const GuardedThreadCountSwitch&) = delete; }; void NeuralNetTracker::run() { preview_.init(*video_widget_); GuardedThreadCountSwitch switch_num_threads_to(num_threads_); if (!open_camera()) return; if (!load_and_initialize_model()) return; std::chrono::high_resolution_clock clk; while (!isInterruptionRequested()) { is_visible_ = check_is_visible(); auto t = clk.now(); { QMutexLocker l(&camera_mtx_); auto [ img, res ] = camera_->get_frame(); if (!res) { l.unlock(); portable::sleep(100); continue; } { QMutexLocker lck{&stats_mtx_}; resolution_ = { img.width, img.height }; } auto color = prepare_input_image(img); if (is_visible_) preview_.copy_video_frame(color); switch (img.channels) { case 1: grayscale_.create(img.height, img.width, CV_8UC1); color.copyTo(grayscale_); break; case 3: cv::cvtColor(color, grayscale_, cv::COLOR_BGR2GRAY); break; default: qDebug() << "Can't handle" << img.channels << "color channels"; return; } } set_intrinsics(); detect(); if (is_visible_) preview_.copy_to_widget(*video_widget_); update_fps( std::chrono::duration_cast( clk.now() - t).count()*1.e-3); } } cv::Mat NeuralNetTracker::prepare_input_image(const video::frame& frame) { auto img = cv::Mat(frame.height, frame.width, CV_8UC(frame.channels), (void*)frame.data, frame.stride); // Crop if aspect ratio is not 4:3 if (img.rows*4 != img.cols*3) { img = img(make_crop_rect_for_aspect(img.size(), 4, 3)); } img = img(make_crop_rect_multiple_of(img.size(), 4)); if (img.cols > 640) { cv::pyrDown(img, downsized_original_images_[0]); img = downsized_original_images_[0]; } if (img.cols > 640) { cv::pyrDown(img, downsized_original_images_[1]); img = downsized_original_images_[1]; } return img; } void NeuralNetTracker::update_fps(double dt) { const double alpha = dt/(dt + RC); if (dt > 1e-6) { QMutexLocker lck{&stats_mtx_}; fps_ *= 1 - alpha; fps_ += alpha * 1./dt; } } void NeuralNetTracker::data(double *data) { Affine tmp = [&]() { QMutexLocker lck(&mtx_); return pose_; }(); const auto& mx = tmp.R.col(0); const auto& my = tmp.R.col(1); const auto& mz = -tmp.R.col(2); const float yaw = std::atan2(mx(2), mx(0)); const float pitch = -std::atan2(-mx(1), std::sqrt(mx(2)*mx(2)+mx(0)*mx(0))); const float roll = std::atan2(-my(2), mz(2)); { constexpr double rad2deg = 180/M_PI; data[Yaw] = rad2deg * yaw; data[Pitch] = rad2deg * pitch; data[Roll] = rad2deg * roll; // convert to cm data[TX] = -tmp.t[2] * 0.1; data[TY] = tmp.t[1] * 0.1; data[TZ] = -tmp.t[0] * 0.1; } } Affine NeuralNetTracker::pose() { QMutexLocker lck(&mtx_); return pose_; } std::tuple NeuralNetTracker::stats() const { QMutexLocker lck(&stats_mtx_); return { resolution_, fps_, inference_time_ }; } void NeuralNetDialog::make_fps_combobox() { for (int k = 0; k < fps_MAX; k++) { const int hz = enum_to_fps(k); const QString name = (hz == 0) ? tr("Default") : QString::number(hz); ui_.cameraFPS->addItem(name, k); } } void NeuralNetDialog::make_resolution_combobox() { int k=0; for (const auto [w, h] : resolution_choices) { const QString s = (w == 0) ? tr("Default") : QString::number(w) + " x " + QString::number(h); ui_.resolution->addItem(s, k++); } } NeuralNetDialog::NeuralNetDialog() : trans_calib_(1, 2) { ui_.setupUi(this); make_fps_combobox(); make_resolution_combobox(); for (const auto& str : video::camera_names()) ui_.cameraName->addItem(str); tie_setting(settings_.camera_name, ui_.cameraName); tie_setting(settings_.fov, ui_.cameraFOV); tie_setting(settings_.offset_fwd, ui_.tx_spin); tie_setting(settings_.offset_up, ui_.ty_spin); tie_setting(settings_.offset_right, ui_.tz_spin); tie_setting(settings_.show_network_input, ui_.showNetworkInput); tie_setting(settings_.roi_filter_alpha, ui_.roiFilterAlpha); tie_setting(settings_.use_mjpeg, ui_.use_mjpeg); tie_setting(settings_.roi_zoom, ui_.roiZoom); tie_setting(settings_.num_threads, ui_.threadCount); tie_setting(settings_.resolution, ui_.resolution); tie_setting(settings_.force_fps, ui_.cameraFPS); connect(ui_.buttonBox, SIGNAL(accepted()), this, SLOT(doOK())); connect(ui_.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel())); connect(ui_.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings())); connect(&settings_.camera_name, value_::value_changed(), this, &NeuralNetDialog::update_camera_settings_state); update_camera_settings_state(settings_.camera_name); connect(&calib_timer_, &QTimer::timeout, this, &NeuralNetDialog::trans_calib_step); calib_timer_.setInterval(35); connect(ui_.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool))); connect(&tracker_status_poll_timer_, &QTimer::timeout, this, &NeuralNetDialog::status_poll); tracker_status_poll_timer_.setInterval(250); tracker_status_poll_timer_.start(); } void NeuralNetDialog::doOK() { settings_.b->save(); close(); } void NeuralNetDialog::doCancel() { close(); } void NeuralNetDialog::camera_settings() { if (tracker_) { QMutexLocker l(&tracker_->camera_mtx_); (void)tracker_->camera_->show_dialog(); } else (void)video::show_dialog(settings_.camera_name); } void NeuralNetDialog::update_camera_settings_state(const QString& name) { (void)name; ui_.camera_settings->setEnabled(true); } void NeuralNetDialog::register_tracker(ITracker * x) { tracker_ = static_cast(x); ui_.tcalib_button->setEnabled(true); } void NeuralNetDialog::unregister_tracker() { tracker_ = nullptr; ui_.tcalib_button->setEnabled(false); } void NeuralNetDialog::status_poll() { QString status; if (!tracker_) { status = tr("Tracker Offline"); } else { auto [ res, fps, inference_time ] = tracker_->stats(); status = tr("%1x%2 @ %3 FPS / Inference: %4 ms").arg(res.width).arg(res.height).arg(int(fps)).arg(int(inference_time)); } ui_.resolution_display->setText(status); } void NeuralNetDialog::trans_calib_step() { if (tracker_) { const Affine X_CM = [&]() { QMutexLocker l(&calibrator_mutex_); return tracker_->pose(); }(); trans_calib_.update(X_CM.R, X_CM.t); auto [_, nsamples] = trans_calib_.get_estimate(); constexpr int min_yaw_samples = 15; constexpr int min_pitch_samples = 12; constexpr int min_samples = min_yaw_samples+min_pitch_samples; // Don't bother counting roll samples. Roll calibration is hard enough // that it's a hidden unsupported feature anyway. QString sample_feedback; if (nsamples[0] < min_yaw_samples) sample_feedback = tr("%1 yaw samples. Yaw more to %2 samples for stable calibration.").arg(nsamples[0]).arg(min_yaw_samples); else if (nsamples[1] < min_pitch_samples) sample_feedback = tr("%1 pitch samples. Pitch more to %2 samples for stable calibration.").arg(nsamples[1]).arg(min_pitch_samples); else { const int nsamples_total = nsamples[0] + nsamples[1]; sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples); } ui_.sample_count_display->setText(sample_feedback); } else startstop_trans_calib(false); } void NeuralNetDialog::startstop_trans_calib(bool start) { QMutexLocker l(&calibrator_mutex_); // FIXME: does not work ... if (start) { qDebug() << "pt: starting translation calibration"; calib_timer_.start(); trans_calib_.reset(); ui_.sample_count_display->setText(QString()); // Tracker must run with zero'ed offset for calibration. settings_.offset_fwd = 0; settings_.offset_up = 0; settings_.offset_right = 0; } else { calib_timer_.stop(); qDebug() << "pt: stopping translation calibration"; { auto [tmp, nsamples] = trans_calib_.get_estimate(); settings_.offset_fwd = int(tmp[0]); settings_.offset_up = int(tmp[1]); settings_.offset_right = int(tmp[2]); } } ui_.tx_spin->setEnabled(!start); ui_.ty_spin->setEnabled(!start); ui_.tz_spin->setEnabled(!start); if (start) ui_.tcalib_button->setText(tr("Stop calibration")); else ui_.tcalib_button->setText(tr("Start calibration")); } Settings::Settings() : opts("neuralnet-tracker") {} } // neuralnet_tracker_ns OPENTRACK_DECLARE_TRACKER(NeuralNetTracker, NeuralNetDialog, NeuralNetMetadata)