/* Copyright (c) 2012 Patrick Ruoff * Copyright (c) 2015-2016 Stanislaw Halik * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_extractor.h" #include "compat/util.hpp" #include "compat/math-imports.hpp" #include "point_tracker.h" #include #include #include #include #include #include #include #include //#define DEBUG_CONTOURS #if defined DEBUG_CONTOURS # include #endif using namespace pt_extractor_impl; constexpr int PointExtractor::max_blobs; /* http://en.wikipedia.org/wiki/Mean-shift In this application the idea, is to eliminate any bias of the point estimate which is introduced by the rather arbitrary thresholded area. One must recognize that the thresholded area can only move in one pixel increments since it is binary. Thus, its center of mass might make "jumps" as pixels are added/removed from the thresholded area. With mean-shift, a moving "window" or kernel is multiplied with the gray-scale image, and the COM is calculated of the result. This is iterated where the kernel center is set the previously computed COM. Thus, peaks in the image intensity distribution "pull" the kernel towards themselves. Eventually it stops moving, i.e. then the computed COM coincides with the kernel center. We hope that the corresponding location is a good candidate for the extracted point. The idea similar to the window scaling suggested in Berglund et al. "Fast, bias-free algorithm for tracking single particles with variable size and shape." (2008). */ static cv::Vec2d MeanShiftIteration(const cv::Mat &frame_gray, const vec2 ¤t_center, f filter_width, f& m_) { m_ = 0; // Most amazingling this function runs faster with doubles than with floats. const f s = 1 / filter_width; f m = 0; vec2 com(0, 0); for (int i = 0; i < frame_gray.rows; i++) { const auto frame_ptr = (const uint8_t* restrict)frame_gray.ptr(i); for (int j = 0; j < frame_gray.cols; j++) { f val = frame_ptr[j]; m_ += val; val = val * val; // taking the square wights brighter parts of the image stronger. m += val; { f dx = (j - current_center[0])*s; f dy = (i - current_center[1])*s; f f = fmax(0.0, 1 - dx*dx - dy*dy); val *= f; } com[0] += j * val; com[1] += i * val; } } if (m > f(.1)) { com *= 1 / m; return com; } else return current_center; } PointExtractor::PointExtractor() { blobs.reserve(max_blobs); } void PointExtractor::extract_points(const cv::Mat& frame, cv::Mat& preview_frame, std::vector& points) { if (frame_gray.rows != frame.rows || frame_gray.cols != frame.cols) { frame_gray = cv::Mat1b(frame.rows, frame.cols); frame_bin = cv::Mat1b(frame.rows, frame.cols); for (unsigned k = 0; k < max_blobs; k++) contour_masks[k] = cv::Mat1b(frame.rows, frame.cols); } cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY); const double region_size_min = s.min_point_size; const double region_size_max = s.max_point_size; if (!s.auto_threshold) { const int thres = s.threshold; cv::threshold(frame_gray, frame_bin, thres, 255, cv::THRESH_BINARY); } else { static const std::vector used_channels { 0 }; static const std::vector hist_size { 256 }; static const std::vector hist_ranges { 0, 256 }; cv::calcHist(std::vector { frame_gray }, used_channels, cv::noArray(), hist, hist_size, hist_ranges, false); static constexpr double min_radius = 2.5; static constexpr double max_radius = 15; const float* restrict ptr = reinterpret_cast(hist.data); const double radius = fmax(0., (max_radius-min_radius) * s.threshold / 255 + min_radius); const unsigned area = uround(3 * M_PI * radius * radius); unsigned thres = 255; unsigned accum = 0; for (unsigned k = 255; k != 16; k--) { accum += ptr[k]; if (accum >= area) { thres = k; break; } } cv::threshold(frame_gray, frame_bin, thres, 255, cv::THRESH_BINARY); } blobs.clear(); contours.clear(); // ----- // start code borrowed from OpenCV's modules/features2d/src/blobdetector.cpp // ----- cv::findContours(frame_bin, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE); const unsigned cnt = min(max_blobs, int(contours.size())); for (unsigned k = 0; k < cnt; k++) { if (contours[k].size() == 0) continue; cv::Moments moments = cv::moments(contours[k]); const double area = moments.m00; // ----- // end of code borrowed from OpenCV's modules/features2d/src/blobdetector.cpp // ----- const double radius = sqrt(area) / sqrt(M_PI); if (radius < fmax(2.5, region_size_min) || (radius > region_size_max)) continue; const cv::Rect rect = cv::boundingRect(contours[k]) & cv::Rect(0, 0, frame.cols, frame.rows); if (rect.width == 0 || rect.height == 0) continue; const vec2 center(moments.m10 / moments.m00, moments.m01 / moments.m00); if (!cv::Point2d(center).inside(cv::Rect2d(rect))) continue; contour_masks[k].setTo(0); cv::drawContours(contour_masks[k], contours, k, cv::Scalar(255, 255, 255), cv::FILLED, cv::LINE_4); contour_masks[k] = frame_gray & contour_masks[k]; #if defined DEBUG_CONTOURS if (blobs.size() == 0) { cv::imshow("mask", contour_masks[k]); cv::waitKey(1); } #endif blob b(radius, center, 0, rect, k); blobs.push_back(b); static const f offx = 10, offy = 7.5; const f cx = preview_frame.cols / f(frame.cols), cy = preview_frame.rows / f(frame.rows), c_ = (cx+cy)/2; static constexpr unsigned fract_bits = 16; static constexpr double c_fract(1 << fract_bits); cv::Point p(iround(b.pos[0] * cx * c_fract), iround(b.pos[1] * cy * c_fract)); cv::circle(preview_frame, p, iround((b.radius + 2) * c_ * c_fract), cv::Scalar(255, 255, 0), 1, cv::LINE_AA, fract_bits); cv::circle(preview_frame, p, 1, cv::Scalar(255, 255, 64), -1, cv::LINE_4); char buf[64]; sprintf(buf, "%.1fpx", int(b.radius*10+.5)/10.); cv::putText(preview_frame, buf, cv::Point(iround(b.pos[0]*cx+offx), iround(b.pos[1]*cy+offy)), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 0, 255), 1); } const int W = frame.cols; const int H = frame.rows; #if defined DEBUG_MEANSHIFT double meanshift_total = 0; #endif for (unsigned k = 0; k < unsigned(blobs.size()); ++k) { blob &b = blobs[k]; const cv::Rect rect = b.rect; const unsigned idx = b.idx; cv::Mat frame_roi = contour_masks[idx](rect); static constexpr f radius_c = 1.75; const f kernel_radius = b.radius * radius_c; cv::Vec2d pos(b.pos[0] - rect.x, b.pos[1] - rect.y); // position relative to ROI. #if defined DEBUG_MEANSHIFT cv::Vec2d pos_(pos); #endif f norm; for (int iter = 0; iter < 10; ++iter) { cv::Vec2d com_new = MeanShiftIteration(frame_roi, pos, kernel_radius, norm); cv::Vec2d delta = com_new - pos; pos = com_new; if (delta.dot(delta) < 1e-3) break; } const f area = f(M_PI) * b.radius * b.radius; // note that sqrt isn't derived from anything. we just want bigger points. b.value = norm / sqrt(area); #if defined DEBUG_MEANSHIFT meanshift_total += sqrt((pos_ - pos).dot(pos_ - pos)); #endif b.pos[0] = pos[0] + rect.x; b.pos[1] = pos[1] + rect.y; if (!cv::Point2d(b.pos[0], b.pos[1]).inside(b.rect)) continue; } #if defined DEBUG_MEANSHIFT qDebug() << "meanshift adjust total" << meanshift_total; #endif std::sort(blobs.begin(), blobs.end(), [](const blob& b1, const blob& b2) { return b1.value > b2.value; }); // End of mean shift code. At this point, blob positions are updated with hopefully less noisy, less biased values. points.reserve(max_blobs); points.clear(); for (const auto& b : blobs) { // note: H/W is equal to fx/fy vec2 p((b.pos[0] - W/2)/W, -(b.pos[1] - H/2)/W); points.push_back(p); } } blob::blob(double radius, const cv::Vec2d& pos, double brightness, const cv::Rect& rect, unsigned idx) : radius(radius), value(brightness), pos(pos), rect(rect), idx(idx) { //qDebug() << "radius" << radius << "pos" << pos[0] << pos[1]; }