/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_tracker.h" #include "opentrack-compat/nan.hpp" #include #include #include #include static void get_row(const cv::Matx33d& m, int i, cv::Vec3d& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } static void set_row(cv::Matx33d& m, int i, const cv::Vec3d& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } static bool d_vals_sort(const std::pair a, const std::pair b) { return a.first < b.first; } void PointModel::get_d_order(const std::vector& points, int* d_order, const cv::Vec2d& d) const { // fit line to orthographically projected points std::vector> d_vals; // get sort indices with respect to d scalar product for (unsigned i = 0; i < N_POINTS; ++i) d_vals.push_back(std::pair(d.dot(points[i]), i)); std::sort(d_vals.begin(), d_vals.end(), d_vals_sort ); for (unsigned i = 0; i& points, const PointModel& model, double focal_length, int w, int h) { PointTracker::PointOrder p; p.points[0] = project(cv::Vec3d(0,0,0), focal_length); p.points[1] = project(model.M01, focal_length); p.points[2] = project(model.M02, focal_length); const int diagonal = int(std::sqrt(w*w + h*h)); static constexpr int div = 100; const int max_dist = diagonal / div; // 8 pixels for 640x480 // set correspondences by minimum distance to projected model point bool point_taken[PointModel::N_POINTS]; for (int i=0; i max_dist) return find_correspondences(points, model); // if one point is closest to more than one model point, fallback if (point_taken[min_idx]) { init_phase = true; return find_correspondences(points, model); } point_taken[min_idx] = true; p.points[i] = points[min_idx]; } return p; } void PointTracker::track(const std::vector& points, const PointModel& model, double focal_length, bool dynamic_pose, int init_phase_timeout, int w, int h) { PointOrder order; if (t.elapsed_ms() > init_phase_timeout) { t.start(); init_phase = true; } if (!dynamic_pose || init_phase) order = find_correspondences(points, model); else { order = find_correspondences_previous(points, model, focal_length, w, h); } POSIT(model, order, focal_length); init_phase = false; t.start(); } PointTracker::PointOrder PointTracker::find_correspondences(const std::vector& points, const PointModel& model) { // We do a simple freetrack-like sorting in the init phase... // sort points int point_d_order[PointModel::N_POINTS]; int model_d_order[PointModel::N_POINTS]; cv::Vec2d d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); model.get_d_order(points, point_d_order, d); // calculate d and d_order for simple freetrack-like point correspondence model.get_d_order(std::vector { cv::Vec2d{0,0}, cv::Vec2d(model.M01[0], model.M01[1]), cv::Vec2d(model.M02[0], model.M02[1]) }, model_d_order, d); // set correspondences PointOrder p; for (int i=0; i bool nanp(const cv::Matx& m) { for (int i = 0; i < h; i++) for (int j = 0; j < w; j++) if (nanp(m(i, j))) return true; return false; } bool PointTracker::POSIT(const PointModel& model, const PointOrder& order_, double focal_length) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] // we use the same notation as in the paper here // The expected rotation used for resolving the ambiguity in POSIT: // In every iteration step the rotation closer to R_expected is taken cv::Matx33d R_expected = cv::Matx33d::eye(); // initial pose = last (predicted) pose cv::Vec3d k; get_row(R_expected, 2, k); double Z0 = 1000; double old_epsilon_1 = 0; double old_epsilon_2 = 0; double epsilon_1 = 1; double epsilon_2 = 1; cv::Vec3d I0, J0; cv::Vec2d I0_coeff, J0_coeff; cv::Vec3d I_1, J_1, I_2, J_2; cv::Matx33d R_1, R_2; cv::Matx33d& R_current = R_1; const int MAX_ITER = 500; static constexpr double eps = 1e-6; const cv::Vec2d* order = order_.points; using std::sqrt; using std::atan; using std::cos; using std::sin; using std::fabs; int i=1; for (; i and cv::Vec2d I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], order[2][0]*(1.0 + epsilon_2) - order[0][0]); cv::Vec2d J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1], order[2][1]*(1.0 + epsilon_2) - order[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 I0_coeff = model.P * I0_M0i; J0_coeff = model.P * J0_M0i; I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; // calculate u component of I, J double II0 = I0.dot(I0); double IJ0 = I0.dot(J0); double JJ0 = J0.dot(J0); double rho, theta; if (JJ0 == II0) { rho = std::sqrt(std::fabs(2*IJ0)); theta = -M_PI/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); // avoid branch misprediction theta += (JJ0 - II0 < 0) * M_PI; theta /= 2; } // construct the two solutions I_1 = I0 + rho*cos(theta)*model.u; I_2 = I0 - rho*cos(theta)*model.u; J_1 = J0 + rho*sin(theta)*model.u; J_2 = J0 - rho*sin(theta)*model.u; double norm_const = 1/cv::norm(I_1); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; I_2 *= norm_const; J_2 *= norm_const; set_row(R_1, 0, I_1); set_row(R_1, 1, J_1); set_row(R_1, 2, I_1.cross(J_1)); set_row(R_2, 0, I_2); set_row(R_2, 1, J_2); set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution Z0 = norm_const * focal_length; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || double R_1_deviation = cv::norm(cv::Matx33d::eye() - R_expected * R_1.t()); double R_2_deviation = cv::norm(cv::Matx33d::eye() - R_expected * R_2.t()); if (R_1_deviation < R_2_deviation) R_current = R_1; else R_current = R_2; get_row(R_current, 2, k); // check for convergence condition const double delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2); if (!(delta > eps)) break; old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } if (!nanp(R_current) && !nanp(order[0]) && !nanp(order[1]) && !nanp(focal_length) && !nanp(Z0)) { //qDebug() << "iter:" << i; // apply results X_CM.R = R_current; X_CM.t[0] = order[0][0] * Z0/focal_length; X_CM.t[1] = order[0][1] * Z0/focal_length; X_CM.t[2] = Z0; return false; } else return true; } cv::Vec2d PointTracker::project(const cv::Vec3d& v_M, double f) { cv::Vec3d v_C = X_CM * v_M; return cv::Vec2d(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]); }