/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_tracker.h" #include "compat/math-imports.hpp" #include <vector> #include <algorithm> #include <cmath> #include <QDebug> namespace pt_impl { using namespace numeric_types; static void get_row(const mat33& m, int i, vec3& v) { v[0] = m(i,0); v[1] = m(i,1); v[2] = m(i,2); } static void set_row(mat33& m, int i, const vec3& v) { m(i,0) = v[0]; m(i,1) = v[1]; m(i,2) = v[2]; } PointModel::PointModel(const pt_settings& s) { set_model(s); // calculate u u = M01.cross(M02); u = cv::normalize(u); // calculate projection matrix on M01,M02 plane f s11 = M01.dot(M01); f s12 = M01.dot(M02); f s22 = M02.dot(M02); P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11); } void PointModel::set_model(const pt_settings& s) { switch (s.active_model_panel) { default: eval_once(qDebug() << "pt: wrong model type selected"); [[fallthrough]]; case Clip: M01 = vec3(0, s.clip_ty, -s.clip_tz); M02 = vec3(0, -s.clip_by, -s.clip_bz); break; case Cap: M01 = vec3(-s.cap_x, -s.cap_y, -s.cap_z); M02 = vec3(s.cap_x, -s.cap_y, -s.cap_z); break; case Custom: M01 = vec3(s.m01_x, s.m01_y, s.m01_z); M02 = vec3(s.m02_x, s.m02_y, s.m02_z); break; } } void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d) { constexpr unsigned cnt = PointModel::N_POINTS; // fit line to orthographically projected points using t = std::pair<f,unsigned>; t d_vals[cnt]; // get sort indices with respect to d scalar product for (unsigned i = 0; i < cnt; ++i) d_vals[i] = {d.dot(points[i]), i}; std::sort(std::begin(d_vals), std::end(d_vals), [](t a, t b) { return a.first < b.first; }); for (unsigned i = 0; i < cnt; ++i) d_order[i] = d_vals[i].second; } PointTracker::PointTracker() = default; PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2* points, const PointModel& model, const pt_camera_info& info) { const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y); PointTracker::PointOrder p { project(vec3(0,0,0), fx), project(model.M01, fx), project(model.M02, fx) }; constexpr unsigned sz = PointModel::N_POINTS; // set correspondences by minimum distance to projected model point bool point_taken[sz] {}; for (unsigned i=0; i < sz; ++i) { f min_sdist = 0; unsigned min_idx = 0; // find closest point to projected model point i for (unsigned j=0; j < sz; ++j) { vec2 d = p[i]-points[j]; f sdist = d.dot(d); if (sdist < min_sdist || j == 0) { min_idx = j; min_sdist = sdist; } } // if one point is closest to more than one model point, fallback if (point_taken[min_idx]) { reset_state(); return find_correspondences(points, model); } point_taken[min_idx] = true; p[i] = points[min_idx]; } return p; } void PointTracker::track(const std::vector<vec2>& points, const PointModel& model, const pt_camera_info& info, int init_phase_timeout, point_filter& filter, f deadzone_amount) { const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y); PointOrder order; if (init_phase || init_phase_timeout <= 0 || t.elapsed_ms() > init_phase_timeout) { reset_state(); order = find_correspondences(points.data(), model); } else order = find_correspondences_previous(points.data(), model, info); if (POSIT(model, filter(order, deadzone_amount), fx) != -1) { init_phase = false; t.start(); } else reset_state(); } PointTracker::PointOrder PointTracker::find_correspondences(const vec2* points, const PointModel& model) { constexpr unsigned cnt = PointModel::N_POINTS; // We do a simple freetrack-like sorting in the init phase... unsigned point_d_order[cnt]; unsigned model_d_order[cnt]; // calculate d and d_order for simple freetrack-like point correspondence vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]); // sort points model.get_d_order(points, point_d_order, d); vec2 pts[cnt] { { 0, 0 }, { model.M01[0], model.M01[1] }, { model.M02[0], model.M02[1] }, }; model.get_d_order(pts, model_d_order, d); // set correspondences PointOrder p; for (unsigned i = 0; i < cnt; ++i) p[model_d_order[i]] = points[point_d_order[i]]; return p; } #ifdef __clang__ # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wfloat-equal" #endif int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f focal_length) { // POSIT algorithm for coplanar points as presented in // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"] // we use the same notation as in the paper here // The expected rotation used for resolving the ambiguity in POSIT: // In every iteration step the rotation closer to R_expected is taken const mat33& R_expected{X_CM_expected.R}; // initial pose = last (predicted) pose vec3 k; get_row(R_expected, 2, k); f Z0 = X_CM.t[2] < f(1e-4) ? f(1000) : X_CM.t[2]; f old_epsilon_1 = 0; f old_epsilon_2 = 0; f epsilon_1, epsilon_2; vec3 I0, J0; vec2 I0_coeff, J0_coeff; vec3 I_1, J_1, I_2, J_2; mat33 R_1, R_2; mat33* R_current = &R_1; constexpr int max_iter = 100; int i; for (i = 1; i < max_iter; ++i) { epsilon_1 = k.dot(model.M01)/Z0; epsilon_2 = k.dot(model.M02)/Z0; // vector of scalar products <I0, M0i> and <J0, M0i> vec2 I0_M0i(order[1][0]*(1 + epsilon_1) - order[0][0], order[2][0]*(1 + epsilon_2) - order[0][0]); vec2 J0_M0i(order[1][1]*(1 + epsilon_1) - order[0][1], order[2][1]*(1 + epsilon_2) - order[0][1]); // construct projection of I, J onto M0i plane: I0 and J0 I0_coeff = model.P * I0_M0i; J0_coeff = model.P * J0_M0i; I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02; J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02; // calculate u component of I, J f II0 = I0.dot(I0); f IJ0 = I0.dot(J0); f JJ0 = J0.dot(J0); f rho, theta; // CAVEAT don't change to comparison with an epsilon -sh 20160423 if (JJ0 == II0) { rho = sqrt(fabs(2*IJ0)); theta = -pi/4; if (IJ0<0) theta *= -1; } else { rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 )); theta = atan( -2*IJ0 / (JJ0-II0) ); // avoid branch misprediction theta += (JJ0 - II0 < 0) * pi; theta *= f(.5); } // construct the two solutions I_1 = I0 + rho*cos(theta)*model.u; I_2 = I0 - rho*cos(theta)*model.u; J_1 = J0 + rho*sin(theta)*model.u; J_2 = J0 - rho*sin(theta)*model.u; f norm_const = (f)(1/cv::norm(I_1)); // all have the same norm // create rotation matrices I_1 *= norm_const; J_1 *= norm_const; I_2 *= norm_const; J_2 *= norm_const; set_row(R_1, 0, I_1); set_row(R_1, 1, J_1); set_row(R_1, 2, I_1.cross(J_1)); set_row(R_2, 0, I_2); set_row(R_2, 1, J_2); set_row(R_2, 2, I_2.cross(J_2)); // the single translation solution Z0 = norm_const * focal_length; // pick the rotation solution closer to the expected one // in simple metric d(A,B) = || I - A * B^T || f R_1_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_1.t())); f R_2_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_2.t())); if (R_1_deviation < R_2_deviation) R_current = &R_1; else R_current = &R_2; get_row(*R_current, 2, k); // check for convergence condition const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2); if (delta < eps) break; old_epsilon_1 = epsilon_1; old_epsilon_2 = epsilon_2; } const f t[3] = { order[0][0] * Z0/focal_length, order[0][1] * Z0/focal_length, Z0 }; const mat33& r = *R_current; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { int ret = std::fpclassify(r(i, j)); if (ret == FP_NAN || ret == FP_INFINITE) { qDebug() << "posit nan R"; return -1; } } for (unsigned i = 0; i < 3; i++) // NOLINT(modernize-loop-convert) { int ret = std::fpclassify(t[i]); if (ret == FP_NAN || ret == FP_INFINITE) { qDebug() << "posit nan T"; return -1; } } // apply results X_CM.R = r; X_CM.t[0] = t[0]; X_CM.t[1] = t[1]; X_CM.t[2] = t[2]; X_CM_expected = X_CM; //qDebug() << "iter:" << i; return i; } #ifdef __clang__ # pragma clang diagnostic pop #endif vec2 PointTracker::project(const vec3& v_M, f focal_length) { return project(v_M, focal_length, X_CM); } vec2 PointTracker::project(const vec3& v_M, f focal_length, const Affine& X_CM) { vec3 v_C = X_CM * v_M; return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]); } void PointTracker::reset_state() { init_phase = true; X_CM_expected = {}; } } // ns pt_impl