#include "pt-api.hpp" #include "cv/numeric.hpp" using namespace numeric_types; pt_camera_info::pt_camera_info() = default; f pt_camera_info::get_focal_length(f fov, int res_x, int res_y) { const f diag_len = std::sqrt(f(res_x*res_x + res_y*res_y)); const f aspect_x = res_x / diag_len; //const double aspect_y = res_y / diag_len; const f diag_fov = fov * pi/180; const f fov_x = 2*std::atan(std::tan(diag_fov*f{.5}) * aspect_x); //const double fov_y = 2*atan(tan(diag_fov*.5) * aspect_y); const f fx = f{.5} / std::tan(fov_x * f{.5}); return fx; //fy = .5 / tan(fov_y * .5); //static bool once = false; if (!once) { once = true; qDebug() << "f" << ret << "fov" << (fov * 180/M_PI); } } pt_camera::pt_camera() = default; pt_camera::~pt_camera() = default; pt_runtime_traits::pt_runtime_traits() = default; pt_runtime_traits::~pt_runtime_traits() = default; pt_point_extractor::pt_point_extractor() = default; pt_point_extractor::~pt_point_extractor() = default; f pt_point_extractor::threshold_radius_value(int w, int h, int threshold) { f cx = w / f{640}, cy = h / f{480}; const f min_radius = f{1.75} * cx; const f max_radius = f{30} * cy; const f radius = std::fmax(f{0}, (max_radius-min_radius) * threshold / f(255) + min_radius); return radius; } std::tuple<f, f> pt_pixel_pos_mixin::to_pixel_pos(f x, f y, int w, int h) { return { w*(x+f{.5}), f{.5}*(h - 2*y*w) }; } std::tuple<f, f> pt_pixel_pos_mixin::to_screen_pos(f px, f py, int w, int h) { px *= w/(w-f{1}); py *= h/(h-f{1}); return { (px - w/f{2})/w, -(py - h/f{2})/w }; } pt_frame::pt_frame() = default; pt_frame::~pt_frame() = default;