#include "tobii-settings.hpp" #include #include #include #include /* def plot(f, max=None, min=None): if max is None and min is None: min, max = -1.5, 1.5 elif max is None: max=-min elif min is None: min=-max assert max > min c = 1e-4*(max-min) if c < 1e-12: c = 1e-6 rng = arange(min, max, c) plt.plot(rng, map(f, rng)) */ /* def richards(b, q, v, c=1): return lambda x: 1./((c + q * exp(-b * x) ** (1./v))) */ void rel_settings::make_spline() { const double dz_len_ = dz_len(), expt_len_ = expt_len(), expt_norm_ = expt_norm(), expt_slope_ = expt_slope(), log_len_ = log_len(); const double expt_deriv_at_end = expt_norm_ * expt_slope_ * std::pow(expt_len_, expt_slope_ - 1); // cnx^(n-1) const double expt_at_end = expt_norm_ * std::pow(expt_len_, expt_slope_); // cx^n const double lin_len = 1 - dz_len_ - expt_len_ - log_len_; // this isn't correct but works. // we use exponentiation of the linear part to get logarithmic approximation of the linear // part rather than linear approximation of the linear part const double lin_at_end = std::pow(M_E, lin_len * expt_deriv_at_end - expt_at_end); // e^(cx + a) const double lin_deriv_at_end = expt_deriv_at_end * std::exp(-expt_at_end + expt_deriv_at_end * lin_len); // ce^(a + cx) // this was all derived by the awesome linear approximation // calculator auto expt_part = [=](double x) { return expt_norm_ * std::pow(x, expt_slope_); }; const double expt_inv_norm = expt_norm_/expt_part(expt_len_); auto lin_part = [=](double x) { return expt_inv_norm * (expt_at_end + expt_deriv_at_end * (x - expt_len_)); }; const double lin_inv_norm = (1 - expt_norm_ - .25)/lin_part(lin_len); // TODO needs norm for log/lin parts auto log_part = [=](double x) { return expt_inv_norm * lin_inv_norm * std::log(lin_at_end + lin_deriv_at_end * (x - lin_len)); }; const double log_inv_norm = .25/log_part(expt_len_); qDebug() << "lin" << expt_deriv_at_end << lin_inv_norm; part functors[] { { dz_len_, [](double) { return 0; } }, { expt_len_, [=](double x) { return expt_inv_norm * expt_part(x); } }, // cx^n { lin_len, [=](double x) { return lin_inv_norm * lin_part(x); } }, // cx + a { log_len_, [=](double x) { return log_inv_norm * log_part(x); } }, // ln(cx + a) }; make_spline_(functors, std::distance(std::begin(functors), std::end(functors))); } rel_settings::rel_settings() : opts("tobii-eyex-relative-mode"), speed(b, "speed", s(3, .1, 10)), dz_len(b, "deadzone-length", s(.04, 0, .2)), expt_slope(b, "exponent-slope", s(1.75, 1.5, 3)), expt_len(b, "exponent-length", s(.2, 0, .5)), expt_norm(b, "exponent-norm", s(.4, .1, .5)), log_len(b, "log-len", s(.1, 0, .2)) { make_spline(); } // there's an underflow in spline code, can't use 1e0 constexpr double spline_max = 1e2; double rel_settings::gain(double value) { return acc_mode_spline.get_value_no_save(value * spline_max) / spline_max; } void rel_settings::make_spline_(part* functors, unsigned len) { acc_mode_spline.clear(); double lastx = 0; for (unsigned k = 0; k < len; k++) { part& fun = functors[k]; constexpr unsigned nparts = 7; for (unsigned i = 1; i <= nparts; i++) { const double x = i*fun.len/nparts; const double y = clamp(fun.f(x), 0, 1); if (i == nparts/2) qDebug() << k << i << x << y; acc_mode_spline.add_point((lastx + x) * spline_max, y * spline_max); } lastx += fun.len; } }