1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#include "euler.hpp"
#include "math-imports.hpp"
#include <cmath>
namespace euler {
euler_t OTR_COMPAT_EXPORT rmat_to_euler(const rmat& R)
{
const double cy = sqrt(R(2,2)*R(2, 2) + R(2, 1)*R(2, 1));
const bool large_enough = cy > 1e-10;
if (large_enough)
return {
atan2(-R(1, 0), R(0, 0)),
atan2(R(2, 0), cy),
atan2(-R(2, 1), R(2, 2))
};
else
return {
atan2(R(0, 1), R(1, 1)),
atan2(R(2, 0), cy),
0
};
}
// tait-bryan angles, not euler
rmat OTR_COMPAT_EXPORT euler_to_rmat(const euler_t& input)
{
const double H = -input(0);
const double P = -input(1);
const double B = -input(2);
const auto c1 = cos(H);
const auto s1 = sin(H);
const auto c2 = cos(P);
const auto s2 = sin(P);
const auto c3 = cos(B);
const auto s3 = sin(B);
return {
// z
c1*c2,
c1*s2*s3 - c3*s1,
s1*s3 + c1*c3*s2,
// y
c2*s1,
c1*c3 + s1*s2*s3,
c3*s1*s2 - c1*s3,
// x
-s2,
c2*s3,
c2*c3
};
}
// https://en.wikipedia.org/wiki/Davenport_chained_rotations#Tait.E2.80.93Bryan_chained_rotations
void OTR_COMPAT_EXPORT tait_bryan_to_matrices(const euler_t& input,
rmat& r_roll,
rmat& r_pitch,
rmat& r_yaw)
{
{
const double phi = -input(2);
const double sin_phi = sin(phi);
const double cos_phi = cos(phi);
r_roll = {
1, 0, 0,
0, cos_phi, -sin_phi,
0, sin_phi, cos_phi
};
}
{
const double theta = input(1);
const double sin_theta = sin(theta);
const double cos_theta = cos(theta);
r_pitch = {
cos_theta, 0, -sin_theta,
0, 1, 0,
sin_theta, 0, cos_theta
};
}
{
const double psi = -input(0);
const double sin_psi = sin(psi);
const double cos_psi = cos(psi);
r_yaw = {
cos_psi, -sin_psi, 0,
sin_psi, cos_psi, 0,
0, 0, 1
};
}
}
template<int H, int W, typename f = double>
rmat quaternion_to_mat_(const Mat<f, H, W>& q)
{
const double w = q.w(), x = q.x(), y = q.y(), z = q.z();
const double ww = w*w, xx = x*x, yy = y*y, zz = z*z;
return rmat(
ww + xx - yy - zz, 2 * (x*y - w*z), 2 * (x*z + w*y),
2 * (x*z - w*y), 2 * (y*z + w*x), ww - xx - yy + zz,
2 * (x*y + w*z), ww - xx + yy - zz, 2 * (y*z - w*x)
);
}
rmat OTR_COMPAT_EXPORT quaternion_to_mat(const dmat<1, 4>& q) { return quaternion_to_mat_(q); }
//rmat OTR_COMPAT_EXPORT quaternion_to_mat(const dmat<4, 1>& q) { return quaternion_to_mat_(q); }
} // end ns euler
|