1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/* Copyright (c) 2014-2016, Stanislaw Halik <sthalik@misaki.pl>
* Permission to use, copy, modify, and/or distribute this
* software for any purpose with or without fee is hereby granted,
* provided that the above copyright notice and this permission
* notice appear in all copies.
*/
#pragma once
#include <cmath>
#include "export.hpp"
#include <compat/util.hpp>
#include <initializer_list>
#include <type_traits>
#include <utility>
namespace mat_detail {
// `zz' param to fool into SFINAE member overload
template<int i, int j, int k, int zz>
constexpr bool equals = ((void)zz, i == k && j != k);
template<int i, int j, int min>
constexpr bool maybe_swizzle =
(i == 1 || j == 1) && (i >= min || j >= min);
template<int i1, int j1, int i2, int j2>
constexpr bool is_vector_pair =
(i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1);
template<int i, int j>
constexpr unsigned vector_len = i > j ? i : j;
template<int a, int b, int c, int d>
constexpr bool dim3 =
(a == 3 || b == 3) && (c == 3 || d == 3) &&
(a == 1 || b == 1) && (c == 1 || d == 1);
template<int h, int w, typename... ts>
constexpr bool arglist_correct = h * w == sizeof...(ts);
template<bool x, typename t>
using sfinae = typename std::enable_if<x, t>::type;
template<typename num, int h_, int w_>
class Mat
{
static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions");
num data[h_][w_];
#define OTR_ASSERT_SWIZZLE static_assert(P == h_ && Q == w_, "")
Mat(std::initializer_list<num>&& init)
{
auto iter = init.begin();
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = *iter++;
}
public:
// start sfinae-R-us block
// rebinding w_ and h_ since SFINAE requires dependent variables
template<int P = h_, int Q = w_> sfinae<equals<Q, P, 1, 0>, num>
OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[i][0]; }
template<int P = h_, int Q = w_> sfinae<equals<Q, 0, 1, 0>, num&>
OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[i][0]; }
template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num>
OTR_FLATTEN operator()(int i) const { OTR_ASSERT_SWIZZLE; return data[0][i]; }
template<int P = h_, int Q = w_> sfinae<equals<P, Q, 1, 1>, num&>
OTR_FLATTEN operator()(int i) { OTR_ASSERT_SWIZZLE; return data[0][i]; }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num>
OTR_FLATTEN x() const { OTR_ASSERT_SWIZZLE; return operator()(0); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 1>, num&>
OTR_FLATTEN x() { OTR_ASSERT_SWIZZLE; return operator()(0); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num>
OTR_FLATTEN y() const { OTR_ASSERT_SWIZZLE; return operator()(1); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 2>, num&>
OTR_FLATTEN y() { OTR_ASSERT_SWIZZLE; return operator()(1); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num>
OTR_FLATTEN z() const { OTR_ASSERT_SWIZZLE; return operator()(2); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 3>, num&>
OTR_FLATTEN z() { OTR_ASSERT_SWIZZLE; return operator()(2); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num>
OTR_FLATTEN w() const { OTR_ASSERT_SWIZZLE; return operator()(3); }
template<int P = h_, int Q = w_> sfinae<maybe_swizzle<P, Q, 4>, num&>
OTR_FLATTEN w() { OTR_ASSERT_SWIZZLE; return operator()(3); }
// end sfinae-R-us block
// parameters w_ and h_ are rebound so that SFINAE occurs
// removing them causes a compile-time error -sh 20150811
template<int R, int S, int P = h_, int Q = w_>
sfinae<is_vector_pair<R, S, P, Q>, num>
dot(const Mat<num, R, S>& p2) const
{
OTR_ASSERT_SWIZZLE;
num ret = 0;
static constexpr unsigned len = vector_len<R, S>;
for (unsigned i = 0; i < len; i++)
ret += operator()(i) * p2(i);
return ret;
}
template<int R, int S, int P = h_, int Q = w_> sfinae<dim3<P, Q, R, S>, Mat<num, 3, 1>>
cross(const Mat<num, R, S>& p2) const
{
OTR_ASSERT_SWIZZLE;
decltype(*this)& OTR_RESTRICT p1 = *this;
return Mat<num, R, S>(p1.y() * p2.z() - p2.y() * p1.z(),
p2.x() * p1.z() - p1.x() * p2.z(),
p1.x() * p2.y() - p1.y() * p2.x());
}
Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] + other.data[j][i];
return ret;
}
Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] - other.data[j][i];
return ret;
}
template<int p>
Mat<num, h_, p> operator*(const Mat<num, w_, p>& other) const
{
Mat<num, h_, p> ret;
for (int k = 0; k < h_; k++)
for (int i = 0; i < p; i++)
{
ret(k, i) = 0;
for (int j = 0; j < w_; j++)
ret(k, i) += data[k][j] * other(j, i);
}
return ret;
}
inline num operator()(int j, int i) const { return data[j][i]; }
inline num& operator()(int j, int i) { return data[j][i]; }
inline num operator()(unsigned j, unsigned i) const { return data[j][i]; }
inline num& operator()(unsigned j, unsigned i) { return data[j][i]; }
template<typename... ts, int P = h_, int Q = w_,
typename = sfinae<arglist_correct<P, Q, ts...>, void>>
Mat(const ts... xs)
{
OTR_ASSERT_SWIZZLE;
static_assert(arglist_correct<P, Q, ts...>, "");
std::initializer_list<num> init = { static_cast<num>(xs)... };
*this = Mat(std::move(init));
}
Mat()
{
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = num(0);
}
Mat(const num* OTR_RESTRICT mem)
{
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = mem[i*h_+j];
}
OTR_ALWAYS_INLINE operator num*() { return reinterpret_cast<num*>(data); }
OTR_ALWAYS_INLINE operator const num*() const { return reinterpret_cast<const num*>(data); }
// XXX add more operators as needed, third-party dependencies mostly
// not needed merely for matrix algebra -sh 20141030
template<int P = h_>
static typename std::enable_if<P == w_, Mat<num, P, P>>::type eye()
{
static_assert(P == h_, "");
Mat<num, P, P> ret;
for (int j = 0; j < P; j++)
for (int i = 0; i < w_; i++)
ret.data[j][i] = 0;
for (int i = 0; i < P; i++)
ret.data[i][i] = 1;
return ret;
}
Mat<num, w_, h_> t() const
{
Mat<num, w_, h_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(i, j) = data[j][i];
return ret;
}
};
template<typename num>
class Quat : Mat<num, 4, 1>
{
using quat = Quat<num>;
enum idx { qw, qx, qy, qz };
static quat _from_array(const num* data)
{
return quat(data[qw], data[qx], data[qy], data[qz]);
}
inline num elt(idx k) const { return operator()(k); }
inline num& elt(idx k) { return Mat<num, 4, 1>::operator()(int(k)); }
public:
Quat(num w, num x, num y, num z) : Mat<num, 4, 1>(w, x, y, z)
{
}
Quat() : quat(1, 0, 0, 0) {}
static quat from_vector(const Mat<num, 4, 1>& data)
{
return _from_array(data);
}
static quat from_vector(const Mat<num, 1, 4>& data)
{
return _from_array(data);
}
quat normalized() const
{
const num x = elt(qx), y = elt(qy), z = elt(qz), w = elt(qw);
const num inv_n = 1./std::sqrt(x*x + y*y + z*z + w*w);
return Quat<num>(elt(qw) * inv_n,
elt(qx) * inv_n,
elt(qy) * inv_n,
elt(qz) * inv_n);
}
quat operator*(const quat& q2)
{
const quat& OTR_RESTRICT q1 = *this;
return quat(-q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z() + q1.w() * q2.w(),
q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x(),
-q1.x() * q2.z() + q1.y() * q2.w() + q1.z() * q2.x() + q1.w() * q2.y(),
q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z());
}
inline num w() const { return elt(qw); }
inline num x() const { return elt(qx); }
inline num y() const { return elt(qy); }
inline num z() const { return elt(qz); }
inline num& w() { return elt(qw); }
inline num& x() { return elt(qx); }
inline num& y() { return elt(qy); }
inline num& z() { return elt(qz); }
};
} // ns detail
template<typename num, int h, int w>
using Mat = mat_detail::Mat<num, h, w>;
template<typename num, int h, int w>
inline Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat) { return mat * scalar; }
template<typename num, int h, int w>
inline Mat<num, h, w> operator-(num scalar, const Mat<num, h, w>& mat) { return mat - scalar; }
template<typename num, int h, int w>
inline Mat<num, h, w> operator+(num scalar, const Mat<num, h, w>& mat) { return mat + scalar; }
template<typename num, int h_, int w_>
inline Mat<num, h_, w_> operator*(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = self(j, i) * other;
return ret;
}
template<typename num, int h_, int w_>
inline Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = self(j, i) - other;
return ret;
}
template<typename num, int h_, int w_>
inline Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& OTR_RESTRICT self, num other)
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = self(j, i) + other;
return ret;
}
template<typename num>
using Quat_ = mat_detail::Quat<num>;
using Quat = Quat_<double>;
template class mat_detail::Mat<float, 3, 3>;
template class mat_detail::Mat<float, 6, 1>;
template class mat_detail::Mat<float, 3, 1>;
// eof
|