1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
/* Copyright (c) 2012 Patrick Ruoff
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
#ifndef ROTATION_H
#define ROTATION_H
#include <cmath>
// ----------------------------------------------------------------------------
class Rotation {
friend Rotation operator*(const Rotation& A, const Rotation& B);
public:
Rotation() : a(1.0),b(0.0),c(0.0),d(0.0) {}
Rotation(double yaw, double pitch, double roll) { fromEuler(yaw, pitch, roll); }
Rotation(double a, double b, double c, double d) : a(a),b(b),c(c),d(d) {}
Rotation inv(){ // inverse
return Rotation(a,-b,-c,-d);
}
// conversions
// see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
void fromEuler(double yaw, double pitch, double roll)
{
double sin_phi = sin(roll/2.0);
double cos_phi = cos(roll/2.0);
double sin_the = sin(pitch/2.0);
double cos_the = cos(pitch/2.0);
double sin_psi = sin(yaw/2.0);
double cos_psi = cos(yaw/2.0);
a = cos_phi*cos_the*cos_psi + sin_phi*sin_the*sin_psi;
b = sin_phi*cos_the*cos_psi - cos_phi*sin_the*sin_psi;
c = cos_phi*sin_the*cos_psi + sin_phi*cos_the*sin_psi;
d = cos_phi*cos_the*sin_psi - sin_phi*sin_the*cos_psi;
}
void Rotation::toEuler(double& yaw, double& pitch, double& roll)
{
roll = atan2(2.0*(a*b + c*d), 1.0 - 2.0*(b*b + c*c));
pitch = asin(2.0*(a*c - b*d));
yaw = atan2(2.0*(a*d + b*c), 1.0 - 2.0*(c*c + d*d));
}
protected:
double a,b,c,d; // quaternion coefficients
};
Rotation operator*(const Rotation& A, const Rotation& B)
{
return Rotation(A.a*B.a - A.b*B.b - A.c*B.c - A.d*B.d, // quaternion multiplication
A.a*B.b + A.b*B.a + A.c*B.d - A.d*B.c,
A.a*B.c - A.b*B.d + A.c*B.a + A.d*B.b,
A.a*B.d + A.b*B.c - A.c*B.b + A.d*B.a);
}
#endif //ROTATION_H
|