summaryrefslogtreecommitdiffhomepage
path: root/ftnoir_tracker_pt/point_extractor.cpp
blob: 77f2473c2b6229995aca27dfe301003be8a529b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* Copyright (c) 2012 Patrick Ruoff
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "point_extractor.h"
#include <QDebug>

#ifdef DEBUG_EXTRACTION
#   include "opentrack-compat/timer.hpp"
#endif

PointExtractor::PointExtractor(){
	//if (!AllocConsole()){}
	//else SetConsoleTitle("debug");
	//freopen("CON", "w", stdout);
	//freopen("CON", "w", stderr);
}
// ----------------------------------------------------------------------------
std::vector<cv::Vec2f> PointExtractor::extract_points(cv::Mat& frame)
{
    const int W = frame.cols;
    const int H = frame.rows;

    // convert to grayscale
    cv::Mat frame_gray;
    cv::cvtColor(frame, frame_gray, cv::COLOR_RGB2GRAY);

    const double region_size_min = s.min_point_size;
    const double region_size_max = s.max_point_size;
    
    struct simple_blob
    {
        double radius;
        cv::Vec2d pos;
        double confid;
        bool taken;
        double area;
        simple_blob(double radius, const cv::Vec2d& pos, double confid, double area) : radius(radius), pos(pos), confid(confid), taken(false), area(area)
        {
            //qDebug() << "radius" << radius << "pos" << pos[0] << pos[1] << "confid" << confid;
        }
        bool inside(const simple_blob& other)
        {
            cv::Vec2d tmp = pos - other.pos;
            return sqrt(tmp.dot(tmp)) < radius;
        }
    };
    
    // mask for everything that passes the threshold (or: the upper threshold of the hysteresis)
    cv::Mat frame_bin = cv::Mat::zeros(H, W, CV_8U);
    
    std::vector<simple_blob> blobs;
    std::vector<std::vector<cv::Point>> contours;

    const int thres = s.threshold;
    if (!s.auto_threshold)
    {
        cv::Mat frame_bin_;
        cv::threshold(frame_gray, frame_bin_, thres, 255, cv::THRESH_BINARY);
        frame_bin.setTo(170, frame_bin_);
        cv::findContours(frame_bin_, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
    }
    else
    {
        cv::Mat hist;
        cv::calcHist(std::vector<cv::Mat> { frame_gray },
                     std::vector<int> { 0 },
                     cv::Mat(),
                     hist,
                     std::vector<int> { 256 },
                     std::vector<float> { 0, 256 },
                     false);
        const int sz = hist.rows*hist.cols;
        int val = 0;
        int cnt = 0;
        constexpr int min_pixels = 2000;
        const int pixels_to_include = std::max(0, static_cast<int>(min_pixels * (1. - s.threshold / 100.)));
        for (int i = sz-1; i >= 0; i--)
        {
            cnt += hist.at<float>(i);
            if (cnt >= pixels_to_include)
            {
                val = i;
                break;
            }
        }
        val *= .95;
        //qDebug() << "cnt" << cnt << "val" << val;

        cv::Mat frame_bin_;
        cv::threshold(frame_gray, frame_bin_, val, 255, CV_THRESH_BINARY);
        frame_bin.setTo(170, frame_bin_);
        cv::findContours(frame_bin_, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
    }

    int cnt = 0;

    for (auto& c : contours)
    {
        if (cnt++ > 30)
            break;

        const auto m = cv::moments(cv::Mat(c));
        const double area = m.m00;
        if (area == 0.)
            continue;
        const cv::Vec2d pos(m.m10 / m.m00, m.m01 / m.m00);

        double radius;
// following based on OpenCV SimpleBlobDetector
        {
            std::vector<double> dists;
            for (auto& k : c)
            {
                dists.push_back(cv::norm(pos - cv::Vec2d(k.x, k.y)));
            }
            std::sort(dists.begin(), dists.end());
            radius = (dists[(dists.size() - 1)/2] + dists[dists.size()/2])/2;
        }

        if (radius < region_size_min || radius > region_size_max)
            continue;

        double confid = 1;
        {
            double denominator = std::sqrt(std::pow(2 * m.mu11, 2) + std::pow(m.mu20 - m.mu02, 2));
            const double eps = 1e-2;
            if (denominator > eps)
            {
                double cosmin = (m.mu20 - m.mu02) / denominator;
                double sinmin = 2 * m.mu11 / denominator;
                double cosmax = -cosmin;
                double sinmax = -sinmin;

                double imin = 0.5 * (m.mu20 + m.mu02) - 0.5 * (m.mu20 - m.mu02) * cosmin - m.mu11 * sinmin;
                double imax = 0.5 * (m.mu20 + m.mu02) - 0.5 * (m.mu20 - m.mu02) * cosmax - m.mu11 * sinmax;
                confid = imin / imax;
            }
        }
// end SimpleBlobDetector

        {
            char buf[64];
            sprintf(buf, "%.2fpx %.2fc", radius, confid);
            cv::putText(frame, buf, cv::Point(pos[0]+30, pos[1]+20), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 255), 1);
        }

        blobs.push_back(simple_blob(radius, pos, confid, area));
    }
    
    // clear old points
	points.clear();

    using b = const simple_blob;
    std::sort(blobs.begin(), blobs.end(), [](b& b1, b& b2) {return b1.confid > b2.confid;});
    
    for (auto& b : blobs)
    {
        cv::Vec2f p((b.pos[0] - W/2)/W, -(b.pos[1] - H/2)/W);
        points.push_back(p);
    }
    
    // draw output image
    std::vector<cv::Mat> channels_;
    cv::split(frame, channels_);
    std::vector<cv::Mat> channels;
    {
        cv::Mat frame_bin__ = frame_bin * .5;
        channels.push_back(channels_[0] + frame_bin__);
        channels.push_back(channels_[1] - frame_bin__);
        channels.push_back(channels_[2] - frame_bin__);
        cv::merge(channels, frame);
    }

    return points;
}