summaryrefslogtreecommitdiffhomepage
path: root/ftnoir_tracker_pt/point_tracker.cpp
blob: 125064bf2e88f39e401da773c60c87e4f7d1d6b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/* Copyright (c) 2012 Patrick Ruoff
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "point_tracker.h"

#include <vector>
#include <algorithm>
#include <cmath>

#include <QDebug>

using namespace cv;
using namespace std;

const float PI = 3.14159265358979323846f;

// ----------------------------------------------------------------------------
static void get_row(const Matx33f& m, int i, Vec3f& v)
{
	v[0] = m(i,0);
	v[1] = m(i,1);
	v[2] = m(i,2);
}

static void set_row(Matx33f& m, int i, const Vec3f& v)
{
	m(i,0) = v[0];
	m(i,1) = v[1];
	m(i,2) = v[2];
}

PointModel::PointModel() :
    M01 { 0, 0, 0 },
    M02 { 0, 0, 0 }
{
}

PointModel::PointModel(Vec3f M01, Vec3f M02)
	: M01(M01), M02(M02)
{
	// calculate u
	u = M01.cross(M02);
	u /= norm(u);

	// calculate projection matrix on M01,M02 plane
	float s11 = M01.dot(M01);
	float s12 = M01.dot(M02);
	float s22 = M02.dot(M02);
	P = 1.0/(s11*s22-s12*s12) * Matx22f(s22, -s12, 
		                               -s12,  s11);
	// calculate d and d_order for simple freetrack-like point correspondence
	vector<Vec2f> points;
	points.push_back(Vec2f(0,0));
	points.push_back(Vec2f(M01[0], M01[1]));
	points.push_back(Vec2f(M02[0], M02[1]));
}

#ifdef OPENTRACK_API
static bool d_vals_sort(const pair<float,int> a, const pair<float,int> b)
{
    return a.first < b.first;
}
#endif

void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[]) const
{
	// fit line to orthographically projected points
	Vec2f d(M01[0]-M02[0], M01[1]-M02[1]);
	// get sort indices with respect to d scalar product
	vector< pair<float,int> > d_vals;
	for (unsigned i = 0; i<points.size(); ++i)
		d_vals.push_back(pair<float, int>(d.dot(points[i]), i));

    std::sort(d_vals.begin(),
              d_vals.end(),
#ifdef OPENTRACK_API
              d_vals_sort
#else
              comp
#endif
              );

	for (unsigned i = 0; i<points.size(); ++i)
		d_order[i] = d_vals[i].second;
}


// ----------------------------------------------------------------------------
PointTracker::PointTracker()
{
	X_CM.t[2] = 1000;	// default position: 1 m away from cam;
}

void PointTracker::track(const vector<Vec2f>& points, const PointModel& model)
{
    const PointOrder& order = find_correspondences(points, model);
    int iters = POSIT(model, order);
    qDebug()<<"POSIT iterations:"<<iters;
}

PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model)
{
    // We do a simple freetrack-like sorting in the init phase...
    // sort points
    int point_d_order[PointModel::N_POINTS];
    model.get_d_order(points, point_d_order);
    // set correspondences
    PointOrder p;
    for (int i=0; i<PointModel::N_POINTS; ++i)
        p.points[i] = points[point_d_order[i]];

    return p;
}

int PointTracker::POSIT(const PointModel& model, const PointOrder& order_)
{
	// POSIT algorithm for coplanar points as presented in
	// [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
	// we use the same notation as in the paper here

	// The expected rotation used for resolving the ambiguity in POSIT:
	// In every iteration step the rotation closer to R_expected is taken 
	Matx33f R_expected = Matx33f::eye();	
	
	// initial pose = last (predicted) pose
	Vec3f k;
        get_row(R_expected, 2, k);
        float Z0 = 1000.f;

	float old_epsilon_1 = 0;
	float old_epsilon_2 = 0;
	float epsilon_1 = 1;
	float epsilon_2 = 1;

	Vec3f I0, J0;
	Vec2f I0_coeff, J0_coeff;

	Vec3f I_1, J_1, I_2, J_2;
	Matx33f R_1, R_2;
	Matx33f* R_current;

	const int MAX_ITER = 100;
	const float EPS_THRESHOLD = 1e-4;
    
    const cv::Vec2f* order = order_.points;

	int i=1;
	for (; i<MAX_ITER; ++i)
	{
		epsilon_1 = k.dot(model.M01)/Z0;
		epsilon_2 = k.dot(model.M02)/Z0;

		// vector of scalar products <I0, M0i> and <J0, M0i>
		Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0], 
			         order[2][0]*(1.0 + epsilon_2) - order[0][0]);
		Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1],
			         order[2][1]*(1.0 + epsilon_2) - order[0][1]);

		// construct projection of I, J onto M0i plane: I0 and J0
		I0_coeff = model.P * I0_M0i;
		J0_coeff = model.P * J0_M0i;
		I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
		J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;

		// calculate u component of I, J		
		float II0 = I0.dot(I0);
		float IJ0 = I0.dot(J0);
		float JJ0 = J0.dot(J0);
		float rho, theta;
		if (JJ0 == II0) {
			rho = sqrt(abs(2*IJ0));
			theta = -PI/4;
			if (IJ0<0) theta *= -1;
		}
		else {
			rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
			theta = atan( -2*IJ0 / (JJ0-II0) );
			if (JJ0 - II0 < 0) theta += PI;
			theta /= 2;
		}

		// construct the two solutions
		I_1 = I0 + rho*cos(theta)*model.u;	
		I_2 = I0 - rho*cos(theta)*model.u;

		J_1 = J0 + rho*sin(theta)*model.u;
		J_2 = J0 - rho*sin(theta)*model.u;

		float norm_const = 1.0/norm(I_1); // all have the same norm
		
		// create rotation matrices
		I_1 *= norm_const; J_1 *= norm_const;
		I_2 *= norm_const; J_2 *= norm_const;

		set_row(R_1, 0, I_1);
		set_row(R_1, 1, J_1);
		set_row(R_1, 2, I_1.cross(J_1));
		
		set_row(R_2, 0, I_2);
		set_row(R_2, 1, J_2);
		set_row(R_2, 2, I_2.cross(J_2));

		// the single translation solution
		Z0 = norm_const * focal_length;

		// pick the rotation solution closer to the expected one
		// in simple metric d(A,B) = || I - A * B^T ||
		float R_1_deviation = norm(Matx33f::eye() - R_expected * R_1.t());
		float R_2_deviation = norm(Matx33f::eye() - R_expected * R_2.t());

		if (R_1_deviation < R_2_deviation)
			R_current = &R_1;
		else
			R_current = &R_2;

		get_row(*R_current, 2, k);

		// check for convergence condition
		if (abs(epsilon_1 - old_epsilon_1) +  abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
			break;
		old_epsilon_1 = epsilon_1;
		old_epsilon_2 = epsilon_2;
	}	

	// apply results
	X_CM.R = *R_current;
	X_CM.t[0] = order[0][0] * Z0/focal_length;
	X_CM.t[1] = order[0][1] * Z0/focal_length;
	X_CM.t[2] = Z0;

	return i;

	//Rodrigues(X_CM.R, r);
	//qDebug()<<"iter: "<<i;
	//qDebug()<<"t: "<<X_CM.t[0]<<' '<<X_CM.t[1]<<' '<<X_CM.t[2];
	//Vec3f r;
	//
	//qDebug()<<"r: "<<r[0]<<' '<<r[1]<<' '<<r[2]<<'\n';
}