1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
#include "simple-mat.hpp"
#include "opentrack-compat/pi-constant.hpp"
#include <cmath>
namespace euler {
euler_t OPENTRACK_LOGIC_EXPORT rmat_to_euler(const dmat<3, 3>& R)
{
using std::atan2;
using std::sqrt;
const double cy = sqrt(R(2,2)*R(2, 2) + R(2, 1)*R(2, 1));
const bool large_enough = cy > 1e-10;
if (large_enough)
return euler_t(atan2(-R(2, 1), R(2, 2)),
atan2(R(2, 0), cy),
atan2(-R(1, 0), R(0, 0)));
else
return euler_t(0.,
atan2(R(2, 0), cy),
atan2(R(0, 1), R(1, 1)));
}
// tait-bryan angles, not euler
rmat OPENTRACK_LOGIC_EXPORT euler_to_rmat(const euler_t& input)
{
const double H = input(0);
const double P = input(1);
const double B = -input(2);
using std::cos;
using std::sin;
const auto c1 = cos(H);
const auto s1 = sin(H);
const auto c2 = cos(P);
const auto s2 = sin(P);
const auto c3 = cos(B);
const auto s3 = sin(B);
return rmat(
// z
c1 * c2,
c1 * s2 * s3 - c3 * s1,
s1 * s3 + c1 * c3 * s2,
// y
c2 * s1,
c1 * c3 + s1 * s2 * s3,
c3 * s1 * s2 - c1 * s3,
// x
-s2,
c2 * s3,
c2 * c3
);
}
} // end ns euler
|