1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
/* Copyright (c) 2014-2015, Stanislaw Halik <sthalik@misaki.pl>
* Permission to use, copy, modify, and/or distribute this
* software for any purpose with or without fee is hereby granted,
* provided that the above copyright notice and this permission
* notice appear in all copies.
*/
#pragma once
#include <initializer_list>
#include <type_traits>
#include <cmath>
namespace {
// last param to fool SFINAE into overloading
template<int i, int j, int ignored>
struct equals
{
enum { value = i == j };
};
template<int i, int j, int min>
struct maybe_add_swizzle
{
enum { value = (i == 1 || j == 1) && (i >= min || j >= min) };
};
template<int i1, int j1, int i2, int j2>
struct is_vector_pair
{
enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) };
};
template<int i, int j>
struct vector_len
{
enum { value = i > j ? i : j };
};
template<int a, int b, int c, int d>
struct is_dim3
{
enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) };
enum { P = a == 1 ? 1 : 3 };
enum { Q = a == 1 ? 3 : 1 };
};
template<typename num, int h, int w, typename...ts>
struct is_arglist_correct
{
enum { value = h * w == sizeof...(ts) };
};
}
template<typename num, int h_, int w_>
class Mat
{
num data[h_][w_];
static_assert(h_ > 0 && w_ > 0, "must have positive mat dimensions");
Mat(std::initializer_list<num>&& xs) = delete;
public:
// parameters w_ and h_ are rebound so that SFINAE occurs
// removing them causes a compile-time error -sh 20150811
template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type
inline operator()(int i) const { return data[i][0]; }
template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type
inline operator()(int i) const { return data[0][i]; }
template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type
inline operator()(int i) { return data[i][0]; }
template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type
inline operator()(int i) { return data[0][i]; }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num>::type
inline x() const { return operator()(0); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num>::type
inline y() const { return operator()(1); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num>::type
inline z() const { return operator()(2); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num>::type
inline w() const { return operator()(3); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num&>::type
inline x() { return operator()(0); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num&>::type
inline y() { return operator()(1); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num&>::type
inline z() { return operator()(2); }
template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num&>::type
inline w() { return operator()(3); }
template<int R, int S, int P = h_, int Q = w_>
typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type
dot(const Mat<num, R, S>& p2) const {
num ret = 0;
constexpr int len = vector_len<R, S>::value;
for (int i = 0; i < len; i++)
ret += operator()(i) * p2(i);
return ret;
}
template<int R, int S, int P = h_, int Q = w_>
typename std::enable_if<is_dim3<P, Q, R, S>::value, Mat<num, is_dim3<P, Q, R, S>::P, is_dim3<P, Q, R, S>::Q>>::type
cross(const Mat<num, R, S>& p2) const
{
return Mat<num, R, S>(y() * p2.z() - p2.y() * z(),
p2.x() * z() - x() * p2.z(),
x() * p2.y() - y() * p2.x());
}
Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] + other.data[j][i];
return ret;
}
Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] - other.data[j][i];
return ret;
}
Mat<num, h_, w_> operator+(const num& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] + other;
return ret;
}
Mat<num, h_, w_> operator-(const num& other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] - other;
return ret;
}
Mat<num, h_, w_> operator*(const num other) const
{
Mat<num, h_, w_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(j, i) = data[j][i] * other;
return ret;
}
template<int p>
Mat<num, h_, p> operator*(const Mat<num, w_, p>& other) const
{
Mat<num, h_, p> ret;
for (int k = 0; k < h_; k++)
for (int i = 0; i < p; i++)
{
ret(k, i) = 0;
for (int j = 0; j < w_; j++)
ret(k, i) += data[k][j] * other(j, i);
}
return ret;
}
inline num operator()(int j, int i) const { return data[j][i]; }
inline num& operator()(int j, int i) { return data[j][i]; }
template<typename... ts, int h__ = h_, int w__ = w_,
typename = typename std::enable_if<is_arglist_correct<num, h__, w__, ts...>::value>::type>
Mat(const ts... xs)
{
const std::initializer_list<num> init = { static_cast<num>(xs)... };
auto iter = init.begin();
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = *iter++;
}
Mat()
{
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = num(0);
}
Mat(const num* mem)
{
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
data[j][i] = mem[i*h_+j];
}
Mat(num* mem) : Mat(const_cast<const num*>(mem)) {}
operator num*() { return reinterpret_cast<double*>(data); }
operator const num*() const { return reinterpret_cast<const double*>(data); }
// XXX add more operators as needed, third-party dependencies mostly
// not needed merely for matrix algebra -sh 20141030
static Mat<num, h_, h_> eye()
{
Mat<num, h_, h_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret.data[j][i] = 0;
for (int i = 0; i < h_; i++)
ret.data[i][i] = 1;
return ret;
}
Mat<num, w_, h_> t() const
{
Mat<num, w_, h_> ret;
for (int j = 0; j < h_; j++)
for (int i = 0; i < w_; i++)
ret(i, j) = data[j][i];
return ret;
}
};
#include "export.hpp"
namespace euler {
template<int y, int x> using dmat = Mat<double, y, x>;
using rmat = dmat<3, 3>;
using euler_t = dmat<3, 1>;
rmat OPENTRACK_API_EXPORT euler_to_rmat(const double* input);
// http://stackoverflow.com/a/18436193
euler_t OPENTRACK_API_EXPORT rmat_to_euler(const dmat<3, 3>& R);
} // end ns euler
template<int h_, int w_> using dmat = Mat<double, h_, w_>;
template<typename num, int h, int w>
inline Mat<num, h, w> operator*(num scalar, const Mat<num, h, w>& mat)
{
return mat * scalar;
}
|