summaryrefslogtreecommitdiffhomepage
path: root/opentrack/simple-mat.hpp
blob: 1cea967ec12cb4853e8ecc50258c4b2bef09ad24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#pragma once
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <cmath>

namespace {
    // last param to fool SFINAE into overloading
    template<int i, int j, int ignored>
    struct equals
    {
        enum { value = i == j };
    };
    template<int i, int j, int min>
    struct maybe_add_swizzle
    {
        enum { value = (i == 1 || j == 1) && (i >= min || j >= min) };
    };
    template<int i1, int j1, int i2, int j2>
    struct is_vector_pair
    {
        enum { value = (i1 == i2 && j1 == 1 && j2 == 1) || (j1 == j2 && i1 == 1 && i2 == 1) };
    };
    template<int i, int j>
    struct vector_len
    {
        enum { value = i > j ? i : j };
    };
    template<int a, int b, int c, int d>
    struct is_dim3
    {
        enum { value = (a == 1 && c == 1 && b == 3 && d == 3) || (a == 3 && c == 3 && b == 1 && d == 1) };
        enum { P = a == 1 ? 1 : 3 };
        enum { Q = a == 1 ? 3 : 1 };
    };
}

template<typename num, int h_, int w_>
struct Mat
{
    num data[h_][w_];
    
    template<int Q = w_> typename std::enable_if<equals<Q, 1, 0>::value, num>::type
    __inline operator()(int i) const { return data[i][0]; }
    
    template<int P = h_> typename std::enable_if<equals<P, 1, 1>::value, num>::type
    __inline operator()(int i) const { return data[0][i]; }
    
    template<int Q = w_> typename std::enable_if<equals<Q, 1, 2>::value, num&>::type
    __inline operator()(int i) { return data[i][0]; }
    
    template<int P = h_> typename std::enable_if<equals<P, 1, 3>::value, num&>::type
    __inline operator()(int i) { return data[0][i]; }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num>::type
    __inline x() const { return operator()(0); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num>::type
    __inline y() const { return operator()(1); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num>::type
    __inline z() const { return operator()(2); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num>::type
    __inline w() const { return operator()(3); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 1>::value, num&>::type
    __inline x() { return operator()(0); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 2>::value, num&>::type
    __inline y() { return operator()(1); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 3>::value, num&>::type
    __inline z() { return operator()(2); }
    
    template<int P = h_, int Q = w_> typename std::enable_if<maybe_add_swizzle<P, Q, 4>::value, num&>::type
    __inline w() { return operator()(3); }
    
    template<int R, int S, int P = h_, int Q = w_>
    typename std::enable_if<is_vector_pair<R, S, P, Q>::value, num>::type
    __inline dot(const Mat<num, R, S>& p2) const {
        num ret = 0;
        constexpr int len = vector_len<R, S>::value;
        for (int i = 0; i < len; i++)
            ret += operator()(i) * p2.operator ()(i);
        return ret;
    }
    
    template<int R, int S, int P = h_, int Q = w_>
    typename std::enable_if<is_dim3<P, Q, R, S>::value, Mat<num, is_dim3<P, Q, R, S>::P, is_dim3<P, Q, R, S>::Q>>::type
    __inline cross(const Mat<num, R, S>& p2) const
    {
        return Mat<num, R, S>({y() * p2.z() - p2.y() * z(),
                               p2.x() * z() - x() * p2.z(),
                               x() * p2.y() - y() * p2.x()});
    }
    
    Mat<num, h_, w_> operator+(const Mat<num, h_, w_>& other) const
    {
        Mat<num, h_, w_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w; i++)
                ret(j, i) = this->operator ()(j, i) + other(j, i);
        return ret;
    }
    
    Mat<num, h_, w_> operator-(const Mat<num, h_, w_>& other) const
    {
        Mat<num, h_, w_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                ret(j, i) = this->operator ()(j, i) - other(j, i);
        return ret;
    }
    
    Mat<num, h_, w_> operator+(const num& other) const
    {
        Mat<num, h_, w_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w; i++)
                ret(j, i) = this->operator ()(j, i) + other;
        return ret;
    }
    
    Mat<num, h_, w_> operator-(const num& other) const
    {
        Mat<num, h_, w_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                ret(j, i) = this->operator ()(j, i) - other;
        return ret;
    }
    
    Mat<num, h_, w_> operator*(const num& other) const
    {
        Mat<num, h_, w_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                ret(j, i) = operator()(j, i) * other;
        return ret;
    }
    
    template<int p>
    Mat<num, w_, p> operator*(const Mat<num, w_, p>& other) const
    {
        Mat<num, w_, p> ret;
        for (int j = 0; j < w_; j++)
            for (int i = 0; i < p; i++)
            {
                num sum = num(0);

                for (int k = 0; k < h_; k++)
                    sum += data[j][k]*other.data[k][i];

                ret.data[j][i] = sum;
            }

        return ret;
    }

    __inline num operator()(int j, int i) const { return data[j][i]; }
    __inline num& operator()(int j, int i) { return data[j][i]; }

    Mat(std::initializer_list<num>&& list)
    {
        auto iter = list.begin();
        for (int i = 0; i < h_; i++)
            for (int j = 0; j < w_; j++)
                data[i][j] = *iter++;
    }

    Mat()
    {
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                data[j][i] = 0;
    }

    Mat(const num* mem)
    {
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                data[j][i] = mem[i*h_+j];
    }

    // XXX add more operators as needed, third-party dependencies mostly
    // not needed merely for matrix algebra -sh 20141030

    static Mat<num, h_, h_> eye()
    {
        Mat<num, h_, h_> ret;
        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                ret.data[j][i] = 0;

        for (int i = 0; i < h_; i++)
            ret.data[i][i] = 1;

        return ret;
    }

    Mat<num, w_, h_> t() const
    {
        Mat<num, w_, h_> ret;

        for (int j = 0; j < h_; j++)
            for (int i = 0; i < w_; i++)
                ret.data[i][j] = data[j][i];

        return ret;
    }
    
    template<int h__, int w__> using dmat = Mat<double, h__, w__>;
    
    // http://stackoverflow.com/a/18436193
    static dmat<3, 1> rmat_to_euler(const dmat<3, 3>& R)
    {
        static constexpr double pi = 3.141592653;
        const double pitch_1 = asin(-R(0, 2));
        const double pitch_2 = pi - pitch_1;
        const double cos_p1 = cos(pitch_1), cos_p2 = cos(pitch_2);
        const double roll_1 = atan2(R(1, 2) / cos_p1, R(2, 2) / cos_p1);
        const double roll_2 = atan2(R(1, 2) / cos_p2, R(2, 2) / cos_p2);
        const double yaw_1 = atan2(R(0, 1) / cos_p1, R(0, 0) / cos_p1);
        const double yaw_2 = atan2(R(0, 1) / cos_p2, R(0, 0) / cos_p2);
        if (std::abs(pitch_1) + std::abs(roll_1) + std::abs(yaw_1) > std::abs(pitch_2) + std::abs(roll_2) + std::abs(yaw_2))
        {
            bool fix_neg_pitch = pitch_1 < 0;
            return dmat<3, 1>({yaw_2, std::fmod(fix_neg_pitch ? -pi - pitch_1 : pitch_2, pi), roll_2});
        }
        else
            return dmat<3, 1>({yaw_1, pitch_1, roll_1});
    }
    
    // tait-bryan angles, not euler
    static dmat<3, 3> euler_to_rmat(const double* input)
    {
        static constexpr double pi = 3.141592653;
        auto H = input[0] * pi / 180;
        auto P = input[1] * pi / 180;
        auto B = input[2] * pi / 180;
    
        const auto c1 = cos(H);
        const auto s1 = sin(H);
        const auto c2 = cos(P);
        const auto s2 = sin(P);
        const auto c3 = cos(B);
        const auto s3 = sin(B);
    
        double foo[] = {
            // z
            c1 * c2,
            c1 * s2 * s3 - c3 * s1,
            s1 * s3 + c1 * c3 * s2,
            // y
            c2 * s1,
            c1 * c3 + s1 * s2 * s3,
            c3 * s1 * s2 - c1 * s3,
            // x
            -s2,
            c2 * s3,
            c2 * c3
        };
    
        return dmat<3, 3>(foo);
    }
};
   
template<int h_, int w_> using dmat = Mat<double, h_, w_>;