1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/* Copyright (c) 2021 Michael Welter <michael@welter-4d.de>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
#pragma once
#include "options/options.hpp"
#include "api/plugin-api.hpp"
#include "cv/video-widget.hpp"
#include "cv/translation-calibrator.hpp"
#include "cv/numeric.hpp"
#include "compat/timer.hpp"
#include "video/camera.hpp"
#include "cv/affine.hpp"
#include <QObject>
#include <QThread>
#include <QMutex>
#include <QHBoxLayout>
#include <QDialog>
#include <QTimer>
#include <memory>
#include <cinttypes>
#include <array>
#include <onnxruntime_cxx_api.h>
#include <opencv2/core.hpp>
#include <opencv2/core/types.hpp>
#include <opencv2/imgproc.hpp>
#include "ui_neuralnet-trackercontrols.h"
namespace neuralnet_tracker_ns
{
using namespace options;
enum fps_choices
{
fps_default = 0,
fps_30 = 1,
fps_60 = 2,
fps_MAX = 3
};
struct resolution_tuple
{
int width;
int height;
};
static const std::array<resolution_tuple, 7> resolution_choices =
{{
{ 320, 240 },
{ 640, 480 },
{ 800, 600 },
{ 1024, 768 },
{ 1280, 720 },
{ 1920, 1080},
{ 0, 0 }
}};
struct Settings : opts {
value<int> offset_fwd { b, "offset-fwd", 200 }, // Millimeters
offset_up { b, "offset-up", 0 },
offset_right { b, "offset-right", 0 };
value<QString> camera_name { b, "camera-name", ""};
value<int> fov { b, "field-of-view", 56 };
value<fps_choices> force_fps { b, "force-fps", fps_default };
value<bool> show_network_input { b, "show-network-input", false };
value<double> roi_filter_alpha{ b, "roi-filter-alpha", 1. };
value<double> roi_zoom{ b, "roi-zoom", 1. };
value<bool> use_mjpeg { b, "use-mjpeg", false };
value<int> num_threads { b, "num-threads", 1 };
value<int> resolution { b, "force-resolution", 0 };
Settings();
};
struct CamIntrinsics
{
float focal_length_w;
float focal_length_h;
float fov_w;
float fov_h;
};
class Localizer
{
public:
Localizer(Ort::MemoryInfo &allocator_info,
Ort::Session &&session);
// Returns bounding wrt image coordinate of the input image
// The preceeding float is the score for being a face normalized to [0,1].
std::pair<float, cv::Rect2f> run(
const cv::Mat &frame);
double last_inference_time_millis() const;
private:
inline static constexpr int INPUT_IMG_WIDTH = 288;
inline static constexpr int INPUT_IMG_HEIGHT = 224;
Ort::Session session_{nullptr};
// Inputs / outputs
cv::Mat scaled_frame_{}, input_mat_{};
Ort::Value input_val_{nullptr}, output_val_{nullptr};
std::array<float, 5> results_;
double last_inference_time_ = 0;
};
class PoseEstimator
{
public:
struct Face
{
std::array<float,4> rotation; // Quaternion, (w, x, y, z)
cv::Rect2f box;
cv::Point2f center;
float size;
};
PoseEstimator(Ort::MemoryInfo &allocator_info,
Ort::Session &&session);
/** Inference
*
* Coordinates are defined wrt. the image space of the input `frame`.
* X goes right, Z (depth) into the image, Y points down (like pixel coordinates values increase from top to bottom)
*/
std::optional<Face> run(const cv::Mat &frame, const cv::Rect &box);
// Returns an image compatible with the 'frame' image for displaying.
cv::Mat last_network_input() const;
double last_inference_time_millis() const;
private:
// Operates on the private image data members
int find_input_intensity_90_pct_quantile() const;
int64_t model_version_ = 0; // Queried meta data from the ONNX file
Ort::Session session_{nullptr}; // ONNX's runtime context for running the model
Ort::Allocator allocator_; // Memory allocator for tensors
// Inputs
cv::Mat scaled_frame_{}, input_mat_{}; // Input. One is the original crop, the other is rescaled (?)
std::vector<Ort::Value> input_val_; // Tensors to put into the model
std::vector<const char*> input_names_; // Refers to the names in the onnx model.
// Outputs
cv::Vec<float, 3> output_coord_{}; // 2d Coordinate and head size output.
cv::Vec<float, 4> output_quat_{}; // Quaternion output
cv::Vec<float, 4> output_box_{}; // Bounding box output
std::vector<Ort::Value> output_val_; // Tensors to put the model outputs in.
std::vector<const char*> output_names_; // Refers to the names in the onnx model.
size_t num_recurrent_states_ = 0;
double last_inference_time_ = 0;
};
class Preview
{
public:
void init(const cv_video_widget& widget);
void copy_video_frame(const cv::Mat& frame);
void draw_gizmos(
const std::optional<PoseEstimator::Face> &face,
const Affine& pose,
const std::optional<cv::Rect2f>& last_roi,
const std::optional<cv::Rect2f>& last_localizer_roi,
const cv::Point2f& neckjoint_position);
void overlay_netinput(const cv::Mat& netinput);
void draw_fps(double fps, double last_inference_time);
void copy_to_widget(cv_video_widget& widget);
private:
// Transform from camera frame to preview
cv::Rect2f transform(const cv::Rect2f& r) const;
cv::Point2f transform(const cv::Point2f& p) const;
float transform(float s) const;
cv::Mat preview_image_;
cv::Size preview_size_ = { 0, 0 };
float scale_ = 1.f;
cv::Point2f offset_ = { 0.f, 0.f};
};
class NeuralNetTracker : protected virtual QThread, public ITracker
{
Q_OBJECT
public:
NeuralNetTracker();
~NeuralNetTracker() override;
module_status start_tracker(QFrame* frame) override;
void data(double *data) override;
void run() override;
Affine pose();
std::tuple<cv::Size, double, double> stats() const;
QMutex camera_mtx_;
std::unique_ptr<video::impl::camera> camera_;
private:
bool detect();
bool open_camera();
void set_intrinsics();
cv::Mat prepare_input_image(const video::frame& frame);
bool load_and_initialize_model();
void draw_gizmos(
const std::optional<PoseEstimator::Face> &face,
const Affine& pose);
void update_fps(double dt);
Affine compute_pose(const PoseEstimator::Face &face) const;
Settings settings_;
std::optional<Localizer> localizer_;
std::optional<PoseEstimator> poseestimator_;
Ort::Env env_{nullptr};
Ort::MemoryInfo allocator_info_{nullptr};
CamIntrinsics intrinsics_{};
cv::Mat grayscale_;
std::array<cv::Mat,2> downsized_original_images_ = {}; // Image pyramid
std::optional<cv::Rect2f> last_localizer_roi_;
std::optional<cv::Rect2f> last_roi_;
static constexpr float HEAD_SIZE_MM = 200.f;
mutable QMutex stats_mtx_;
double fps_ = 0;
double inference_time_ = 0;
cv::Size resolution_ = {};
static constexpr double RC = .25;
int num_threads_ = 1;
bool is_visible_ = true;
QMutex mtx_; // Protects the pose
Affine pose_;
Preview preview_;
std::unique_ptr<cv_video_widget> video_widget_;
std::unique_ptr<QHBoxLayout> layout_;
};
class NeuralNetDialog : public ITrackerDialog
{
Q_OBJECT
public:
NeuralNetDialog();
void register_tracker(ITracker * x) override;
void unregister_tracker() override;
private:
void make_fps_combobox();
void make_resolution_combobox();
Ui::Form ui_;
Settings settings_;
// Calibration code mostly taken from point tracker
QTimer calib_timer_;
TranslationCalibrator trans_calib_;
QMutex calibrator_mutex_;
QTimer tracker_status_poll_timer_;
NeuralNetTracker* tracker_ = nullptr;
private Q_SLOTS:
void doOK();
void doCancel();
void camera_settings();
void update_camera_settings_state(const QString& name);
void startstop_trans_calib(bool start);
void trans_calib_step();
void status_poll();
};
class NeuralNetMetadata : public Metadata
{
Q_OBJECT
QString name() override { return QString("neuralnet tracker"); }
QIcon icon() override { return QIcon(":/images/neuralnet.png"); }
};
} // neuralnet_tracker_ns
using neuralnet_tracker_ns::NeuralNetTracker;
using neuralnet_tracker_ns::NeuralNetDialog;
using neuralnet_tracker_ns::NeuralNetMetadata;
|