summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/model_adapters.cpp
blob: af5993219fe601b1cb3e178b8ecfe986bfca17e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#include "model_adapters.h"

#include "compat/timer.hpp"

#include <opencv2/core.hpp>
#include <opencv2/core/quaternion.hpp>
#include <opencv2/imgproc.hpp>

#include <QDebug>


namespace neuralnet_tracker_ns
{


float sigmoid(float x)
{
    return 1.f/(1.f + std::exp(-x));
}


// Defined in ftnoir_tracker_neuralnet.cpp
// Normally we wouldn't need it here. However ... see below.
cv::Quatf image_to_world(cv::Quatf q);


cv::Quatf world_to_image(cv::Quatf q)
{
    // It's its own inverse.
    return image_to_world(q);
}


cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w)
{
    auto unnorm = [](float x) -> float { return 0.5*(x+1); };
    auto tl = r.tl();
    auto br = r.br();
    auto x0 = unnorm(tl.x)*w;
    auto y0 = unnorm(tl.y)*h;
    auto x1 = unnorm(br.x)*w;
    auto y1 = unnorm(br.y)*h;
    return {
        x0, y0, x1-x0, y1-y0
    };
}


// Returns width and height of the input tensor, or throws.
// Expects the model to take one tensor as input that must
// have the shape B x C x H x W, where B=C=1.
cv::Size get_input_image_shape(const Ort::Session &session)
{
    if (session.GetInputCount() < 1)
        throw std::invalid_argument("Model must take at least one input tensor");
    const std::vector<std::int64_t> shape = 
        session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
    if (shape.size() != 4)
        throw std::invalid_argument("Model takes the input tensor in the wrong shape");
    return { static_cast<int>(shape[3]), static_cast<int>(shape[2]) };
}


Ort::Value create_tensor(const Ort::TypeInfo& info, Ort::Allocator& alloc)
{
    const auto shape = info.GetTensorTypeAndShapeInfo().GetShape();
    auto t = Ort::Value::CreateTensor<float>(
        alloc, shape.data(), shape.size());
    memset(t.GetTensorMutableData<float>(), 0, sizeof(float)*info.GetTensorTypeAndShapeInfo().GetElementCount());
    return t;
}


int find_input_intensity_quantile(const cv::Mat& frame, float percentage)
{
    const int channels[] = { 0 };
    const int hist_size[] = { 256 };
    float range[] = { 0, 256 };
    const float* ranges[] = { range };
    cv::Mat hist;
    cv::calcHist(&frame, 1,  channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
    int gray_level = 0;
    const int num_pixels_quantile = frame.total()*percentage*0.01f;
    int num_pixels_accum = 0;
    for (int i=0; i<hist_size[0]; ++i)
    {
        num_pixels_accum += hist.at<float>(i);
        if (num_pixels_accum > num_pixels_quantile)
        {
            gray_level = i;
            break;
        }
    }
    return gray_level;
}


// Automatic brightness adjustment. Scales brightness to lie between -.5 and 0.5, roughly.
void normalize_brightness(const cv::Mat& frame, cv::Mat& out)
{
    const float pct = 90;

    const int brightness = find_input_intensity_quantile(frame, pct);

    const double alpha = brightness<127 ? (pct/100.f*0.5f/std::max(5,brightness)) : 1./255;
    const double beta = -0.5;

    frame.convertTo(out, CV_32F, alpha, beta);
}



Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
    session_{std::move(session)},
    scaled_frame_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_8U),
    input_mat_(INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH, CV_32F)
{
    // Only works when input_mat does not reallocated memory ...which it should not.
    // Non-owning memory reference to input_mat?
    // Note: shape = (bach x channels x h x w)
    const std::int64_t input_shape[4] = { 1, 1, INPUT_IMG_HEIGHT, INPUT_IMG_WIDTH };
    input_val_ = Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4);

    const std::int64_t output_shape[2] = { 1, 5 };
    output_val_ = Ort::Value::CreateTensor<float>(allocator_info, results_.data(), results_.size(), output_shape, 2);
}


std::pair<float, cv::Rect2f> Localizer::run(
    const cv::Mat &frame)
{
    auto p = input_mat_.ptr(0);

    cv::resize(frame, scaled_frame_, { INPUT_IMG_WIDTH, INPUT_IMG_HEIGHT }, 0, 0, cv::INTER_AREA);
    scaled_frame_.convertTo(input_mat_, CV_32F, 1./255., -0.5);

    assert (input_mat_.ptr(0) == p);
    assert (!input_mat_.empty() && input_mat_.isContinuous());
    assert (input_mat_.cols == INPUT_IMG_WIDTH && input_mat_.rows == INPUT_IMG_HEIGHT);

    const char* input_names[] = {"x"};
    const char* output_names[] = {"logit_box"};

    Timer t; t.start();

    session_.Run(Ort::RunOptions{nullptr}, input_names, &input_val_, 1, output_names, &output_val_, 1);

    last_inference_time_ = t.elapsed_ms();

    const cv::Rect2f roi = unnormalize(cv::Rect2f{
        results_[1],
        results_[2],
        results_[3]-results_[1], // Width
        results_[4]-results_[2] // Height
    }, frame.rows, frame.cols);
    const float score = sigmoid(results_[0]);

    return { score, roi };
}


double Localizer::last_inference_time_millis() const
{
    return last_inference_time_;
}


PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session) 
    : model_version_{session.GetModelMetadata().GetVersion()}
    , session_{std::move(session)}
    , allocator_{session_, allocator_info}
{
    using namespace std::literals::string_literals;

    if (session_.GetOutputCount() < 2)
        throw std::runtime_error("Invalid Model: must have at least two outputs");

    // WARNING UB .. but still ...
    // If the model was saved without meta data, it seems the version field is uninitialized.
    // In that case reading from it is UB. However, in practice we will just get some arbitrary number
    // which is hopefully different from the numbers used by models where the version is set.
    if (model_version_ != 2 && model_version_ != 3)
        model_version_ = 1;

    const cv::Size input_image_shape = get_input_image_shape(session_);

    scaled_frame_ = cv::Mat(input_image_shape, CV_8U, cv::Scalar(0));
    input_mat_ = cv::Mat(input_image_shape, CV_32F, cv::Scalar(0.f));

    {
        const std::int64_t input_shape[4] = { 1, 1, input_image_shape.height, input_image_shape.width };
        input_val_.push_back(
            Ort::Value::CreateTensor<float>(allocator_info, input_mat_.ptr<float>(0), input_mat_.total(), input_shape, 4));
    }

    struct TensorSpec
    {
        std::vector<int64_t> shape;
        float* buffer = nullptr;
        size_t element_count = 0;
        bool available = false;
    };

    std::unordered_map<std::string, TensorSpec> understood_outputs = {
        { "pos_size", TensorSpec{ { 1, 3 }, &output_coord_[0], output_coord_.rows } },
        { "quat", TensorSpec{ { 1, 4},  &output_quat_[0], output_quat_.rows } },
        { "box", TensorSpec{ { 1, 4}, &output_box_[0], output_box_.rows } },
        { "rotaxis_scales_tril", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }},
        { "rotaxis_std", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }}, // TODO: Delete when old models aren't used any more
        { "eyes", TensorSpec{ { 1, 2}, output_eyes_.val, output_eyes_.rows }},
        { "pos_size_std", TensorSpec{ {1, 3}, output_coord_scales_.val, output_coord_scales_.rows}},
        { "pos_size_scales", TensorSpec{ {1, 3}, output_coord_scales_.val, output_coord_scales_.rows}},
        //{ "box_std", TensorSpec{ {1, 4}, output_box_scales_.val, output_box_scales_ .rows}}
    };

    qDebug() << "Pose model inputs (" << session_.GetInputCount() << ")";
    qDebug() << "Pose model outputs (" << session_.GetOutputCount() << "):";
    for (size_t i=0; i<session_.GetOutputCount(); ++i)
    {
        const char* name = session_.GetOutputName(i, allocator_);
        const auto& output_info = session_.GetOutputTypeInfo(i);
        const auto& onnx_tensor_spec = output_info.GetTensorTypeAndShapeInfo();
        auto my_tensor_spec = understood_outputs.find(name);

        qDebug() << "\t" << name << " (" << onnx_tensor_spec.GetShape() << ") dtype: " <<  onnx_tensor_spec.GetElementType() << " " <<
            (my_tensor_spec != understood_outputs.end() ? "ok" : "unknown");

        if (my_tensor_spec != understood_outputs.end())
        {
            TensorSpec& t = my_tensor_spec->second;
            if (onnx_tensor_spec.GetShape() != t.shape || 
                onnx_tensor_spec.GetElementType() != Ort::TypeToTensorType<float>::type)
                throw std::runtime_error("Invalid output tensor spec for "s + name);
            output_val_.push_back(Ort::Value::CreateTensor<float>(
                allocator_info, t.buffer, t.element_count, t.shape.data(), t.shape.size()));
            t.available = true;
        }
        else
        {
            // Create tensor regardless and ignore output
            output_val_.push_back(create_tensor(output_info, allocator_));
        }
        output_names_.push_back(name);
    }

    has_uncertainty_ = understood_outputs.at("rotaxis_scales_tril").available ||
                       understood_outputs.at("rotaxis_std").available;
    has_uncertainty_ &= understood_outputs.at("pos_size_std").available ||
                        understood_outputs.at("pos_size_scales").available;
    //has_uncertainty_ &= understood_outputs.at("box_std").available;
    has_eye_closed_detection_ = understood_outputs.at("eyes").available;

    // FIXME: Recurrent states

    // size_t num_regular_outputs = 2;

    // num_recurrent_states_ = session_.GetInputCount()-1;
    // if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_)
    //     throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers.");

    // // Create tensors for recurrent state
    // for (size_t i = 0; i < num_recurrent_states_; ++i)
    // {
    //     const auto& input_info = session_.GetInputTypeInfo(1+i);
    //     const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i);
    //     if (input_info.GetTensorTypeAndShapeInfo().GetShape() != 
    //         output_info.GetTensorTypeAndShapeInfo().GetShape())
    //         throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output");
    //     input_val_.push_back(create_tensor(input_info, allocator_));
    //     output_val_.push_back(create_tensor(output_info, allocator_));
    // }

    for (size_t i = 0; i < session_.GetInputCount(); ++i)
    {
        input_names_.push_back(session_.GetInputName(i, allocator_));
    }

    assert (input_names_.size() == input_val_.size());
    assert (output_names_.size() == output_val_.size());
}


std::optional<PoseEstimator::Face> PoseEstimator::run(
    const cv::Mat &frame, const cv::Rect &box)
{
    cv::Mat cropped;

    const int patch_size = std::max(box.width, box.height)*1.05;
    const cv::Point2f patch_center = {
        std::clamp<float>(box.x + 0.5f*box.width, 0.f, frame.cols),
        std::clamp<float>(box.y + 0.5f*box.height, 0.f, frame.rows)
    };
    cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped);

    // Will get failure if patch_center is outside image boundaries settings.
    // Have to catch this case.
    if (cropped.rows != patch_size || cropped.cols != patch_size)
        return {};

    [[maybe_unused]] auto* p = input_mat_.ptr(0);

    cv::resize(cropped, scaled_frame_, scaled_frame_.size(), 0, 0, cv::INTER_AREA);

    normalize_brightness(scaled_frame_, input_mat_);

    assert (input_mat_.ptr(0) == p);
    assert (!input_mat_.empty() && input_mat_.isContinuous());

    Timer t; t.start();

    try
    {
        session_.Run(
            Ort::RunOptions{ nullptr }, 
            input_names_.data(), 
            input_val_.data(), 
            input_val_.size(), 
            output_names_.data(), 
            output_val_.data(), 
            output_val_.size());
    }
    catch (const Ort::Exception &e)
    {
        qDebug() << "Failed to run the model: " << e.what();
        return {};
    }

    for (size_t i = 0; i<num_recurrent_states_; ++i)
    {
        // Next step, the current output becomes the input.
        // Thus we realize the recurrent connection.
        // Only swaps the internal pointers. There is no copy of data.
        std::swap(
            output_val_[output_val_.size()-num_recurrent_states_+i],
            input_val_[input_val_.size()-num_recurrent_states_+i]);
    }

    // FIXME: Execution time fluctuates wildly. 19 to 26 msec. Why?
    //        The instructions are always the same. Maybe a memory allocation
    //        issue. The ONNX api suggests that tensor are allocated in an
    //        arena. Does that matter? Maybe the issue is something else?

    last_inference_time_ = t.elapsed_ms();

    // Perform coordinate transformation.
    // From patch-local normalized in [-1,1] to
    // frame unnormalized pixel coordinatesettings.

    const cv::Point2f center = patch_center + 
        (0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]};

    cv::Point2f center_stddev = {
        (0.5f*patch_size)*output_coord_scales_[0],
        (0.5f*patch_size)*output_coord_scales_[1] };

    const float size = patch_size*0.5f*output_coord_[2];

    float size_stddev = patch_size*0.5f*output_coord_scales_[2];

    // Following Eigen which uses quat components in the order w, x, y, z.
    // As does OpenCV
    cv::Quatf rotation = { 
        output_quat_[3], 
        output_quat_[0], 
        output_quat_[1], 
        output_quat_[2] };

    // Should be lower triangular. If not maybe something is wrong with memory layout ... or the model.
    assert(output_rotaxis_scales_tril_(0, 1) == 0);
    assert(output_rotaxis_scales_tril_(0, 2) == 0);
    assert(output_rotaxis_scales_tril_(1, 2) == 0);

    cv::Matx33f rotaxis_scales_tril = output_rotaxis_scales_tril_;
    
    if (model_version_ < 2)
    {
        // Due to a change in coordinate conventions
        rotation = world_to_image(rotation);
    }

    const cv::Rect2f outbox = {
        patch_center.x + (0.5f*patch_size)*output_box_[0],
        patch_center.y + (0.5f*patch_size)*output_box_[1],
        0.5f*patch_size*(output_box_[2]-output_box_[0]),
        0.5f*patch_size*(output_box_[3]-output_box_[1])
    };
    // const RoiCorners outbox = {
    //     patch_center + 0.5f*patch_size*cv::Point2f{output_box_[0], output_box_[1]},
    //     patch_center + 0.5f*patch_size*cv::Point2f{output_box_[2], output_box_[3]}
    // };
    // RoiCorners outbox_stddev = {
    //     0.5f*patch_size*cv::Point2f{output_box_scales_[0], output_box_scales_[1]},
    //     0.5f*patch_size*cv::Point2f{output_box_scales_[2], output_box_scales_[3]}
    // };

    // Because the model is sensitive to closing eyes we increase the uncertainty 
    // a lot to make the subsequent filtering smooth the output more. This should suppress
    // "twitching" when the user blinks.
    if (has_eye_closed_detection_)
    {
        const float eye_open = std::min(output_eyes_[0], output_eyes_[1]);
        const float increase_factor = 1.f + 10.f * std::pow(1. - eye_open,4.f);
        rotaxis_scales_tril *= increase_factor;
        size_stddev *= increase_factor;
        center_stddev *= increase_factor;
    }

    return std::optional<Face>({
        rotation, rotaxis_scales_tril, outbox, center, center_stddev, size, size_stddev
    });
}


cv::Mat PoseEstimator::last_network_input() const
{
    assert(!input_mat_.empty());
    cv::Mat ret;
    input_mat_.convertTo(ret, CV_8U, 255., 127.);
    cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
    return ret;
}


double PoseEstimator::last_inference_time_millis() const
{
    return last_inference_time_;
}





} // namespace neuralnet_tracker_ns