summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/model_adapters.h
blob: 48f2fa2c76144ec2c0ab720f046319afda5c661e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#pragma once

#include <optional>
#include <array>
#include <vector>
#include <string>

#include <onnxruntime_cxx_api.h>
#include <opencv2/core.hpp>
#include "opencv_contrib.h"


namespace neuralnet_tracker_ns
{

// Generally useful sigmoid function
float sigmoid(float x);


class Localizer
{
    public:
        Localizer(Ort::MemoryInfo &allocator_info,
                    Ort::Session &&session);

        // Returns bounding wrt image coordinate of the input image
        // The preceeding float is the score for being a face normalized to [0,1].
        std::pair<float, cv::Rect2f> run(
            const cv::Mat &frame);

        double last_inference_time_millis() const;
    private:
        inline static constexpr int INPUT_IMG_WIDTH = 288;
        inline static constexpr int INPUT_IMG_HEIGHT = 224;
        Ort::Session session_{nullptr};
        // Inputs / outputs
        cv::Mat scaled_frame_{}, input_mat_{};
        Ort::Value input_val_{nullptr}, output_val_{nullptr};
        std::array<float, 5> results_;
        double last_inference_time_ = 0;
};


class PoseEstimator
{
    public:
        struct Face
        {
            cv::Quatf rotation;
            cv::Matx33f rotaxis_cov_tril; // Lower triangular factor of Cholesky decomposition
            cv::Rect2f box;
            cv::Point2f center;
            cv::Point2f center_stddev;
            float size;
            float size_stddev;
        };

        PoseEstimator(Ort::MemoryInfo &allocator_info,
                        Ort::Session &&session);
        /** Inference
        *
        * Coordinates are defined wrt. the image space of the input `frame`.
        * X goes right, Z (depth) into the image, Y points down (like pixel coordinates values increase from top to bottom)
        */
        std::optional<Face> run(const cv::Mat &frame, const cv::Rect &box);
        // Returns an image compatible with the 'frame' image for displaying.
        cv::Mat last_network_input() const;
        double last_inference_time_millis() const;
        bool has_uncertainty() const { return has_uncertainty_; }

    private:
        std::string get_network_input_name(size_t i) const;
        std::string get_network_output_name(size_t i) const;
        int64_t model_version_ = 0;  // Queried meta data from the ONNX file
        Ort::Session session_{nullptr};  // ONNX's runtime context for running the model
        mutable Ort::Allocator allocator_;   // Memory allocator for tensors
        // Inputs
        cv::Mat scaled_frame_{}, input_mat_{};  // Input. One is the original crop, the other is rescaled (?)
        std::vector<Ort::Value> input_val_;    // Tensors to put into the model
        std::vector<std::string> input_names_; // Refers to the names in the onnx model.
        std::vector<const char *> input_c_names_; // Refers to the C names in the onnx model.
        // Outputs
        cv::Vec<float, 3> output_coord_{};  // 2d Coordinate and head size output.
        cv::Vec<float, 4> output_quat_{};   //  Quaternion output
        cv::Vec<float, 4> output_box_{};    // Bounding box output
        cv::Matx33f output_rotaxis_scales_tril_{}; // Lower triangular matrix of LLT factorization of covariance of rotation vector as offset from output quaternion
        cv::Vec<float, 2> output_eyes_{};
        cv::Vec<float, 3> output_coord_scales_{};
        std::vector<Ort::Value> output_val_; // Tensors to put the model outputs in.
        std::vector<std::string> output_names_; // Refers to the names in the onnx model.
        std::vector<const char *> output_c_names_; // Refers to the C names in the onnx model.
        // More bookkeeping
        size_t num_recurrent_states_ = 0;
        double last_inference_time_ = 0;
        bool has_uncertainty_ = false;
        bool has_eye_closed_detection_ = false;
};


// Finds the intensity where x percent of pixels have less intensity than that.
int find_input_intensity_quantile(const cv::Mat& frame, float percentage);

// Adjust brightness levels to full range and scales the value range to [-0.5, 0.5]
void normalize_brightness(const cv::Mat& frame, cv::Mat& out);


} // namespace neuralnet_tracker_ns