1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
/* Copyright (c) 2012 Patrick Ruoff
* Copyright (c) 2014-2016 Stanislaw Halik <sthalik@misaki.pl>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
#include "ftnoir_tracker_pt.h"
#include "video/video-widget.hpp"
#include "compat/math-imports.hpp"
#include "compat/check-visible.hpp"
#include "pt-api.hpp"
#include <QHBoxLayout>
#include <QDebug>
#include <QFile>
#include <QCoreApplication>
#include <opencv2\calib3d.hpp>
#include <iostream>
using namespace options;
namespace pt_impl {
Tracker_PT::Tracker_PT(pointer<pt_runtime_traits> const& traits) :
traits { traits },
s { traits->get_module_name() },
point_extractor { traits->make_point_extractor() },
camera { traits->make_camera() },
frame { traits->make_frame() },
preview_frame { traits->make_preview(preview_width, preview_height) }
{
cv::setBreakOnError(true);
cv::setNumThreads(1);
connect(s.b.get(), &bundle_::saving, this, &Tracker_PT::maybe_reopen_camera, Qt::DirectConnection);
connect(s.b.get(), &bundle_::reloading, this, &Tracker_PT::maybe_reopen_camera, Qt::DirectConnection);
connect(&s.fov, value_::value_changed<int>(), this, &Tracker_PT::set_fov, Qt::DirectConnection);
set_fov(s.fov);
}
Tracker_PT::~Tracker_PT()
{
requestInterruption();
wait();
QMutexLocker l(&camera_mtx);
camera->stop();
}
// Calculates rotation matrix to euler angles
cv::Vec3f EulerAngles(cv::Mat &R)
{
float sy = sqrt(R.at<double>(0, 0) * R.at<double>(0, 0) + R.at<double>(1, 0) * R.at<double>(1, 0));
bool singular = sy < 1e-6; // If
float x, y, z;
if (!singular)
{
x = atan2(R.at<double>(2, 1), R.at<double>(2, 2));
y = atan2(-R.at<double>(2, 0), sy);
z = atan2(R.at<double>(1, 0), R.at<double>(0, 0));
}
else
{
x = atan2(-R.at<double>(1, 2), R.at<double>(1, 1));
y = atan2(-R.at<double>(2, 0), sy);
z = 0;
}
// Convert to degrees
return cv::Vec3f(x* 180 / CV_PI, y* 180 / CV_PI, z* 180 / CV_PI);
}
void getEulerAngles(cv::Mat &rotCamerMatrix, cv::Vec3d &eulerAngles)
{
cv::Mat cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ;
double* _r = rotCamerMatrix.ptr<double>();
double projMatrix[12] = { _r[0],_r[1],_r[2],0,
_r[3],_r[4],_r[5],0,
_r[6],_r[7],_r[8],0 };
cv::decomposeProjectionMatrix(cv::Mat(3, 4, CV_64FC1, projMatrix),
cameraMatrix,
rotMatrix,
transVect,
rotMatrixX,
rotMatrixY,
rotMatrixZ,
eulerAngles);
}
void Tracker_PT::run()
{
maybe_reopen_camera();
while(!isInterruptionRequested())
{
pt_camera_info info;
bool new_frame = false;
{
QMutexLocker l(&camera_mtx);
if (camera)
std::tie(new_frame, info) = camera->get_frame(*frame);
}
if (new_frame)
{
const bool preview_visible = check_is_visible();
if (preview_visible)
*preview_frame = *frame;
iImagePoints.clear();
point_extractor->extract_points(*frame, *preview_frame, points, iImagePoints);
point_count.store(points.size(), std::memory_order_relaxed);
const bool success = points.size() >= PointModel::N_POINTS;
Affine X_CM;
{
QMutexLocker l(¢er_lock);
if (success)
{
int dynamic_pose_ms = s.dynamic_pose && s.active_model_panel != PointModel::Clip
? s.init_phase_timeout
: 0;
point_tracker.track(points,
PointModel(s),
info,
dynamic_pose_ms);
ever_success.store(true, std::memory_order_relaxed);
// Solve P3P problem with OpenCV
// Construct the points defining the object we want to detect based on settings.
// We are converting them from millimeters to meters.
// TODO: Need to support clip too. That's cap only for now.
std::vector<cv::Point3f> objectPoints;
objectPoints.push_back(cv::Point3f(s.cap_x/1000.0, s.cap_z / 1000.0, -s.cap_y / 1000.0)); // Right
objectPoints.push_back(cv::Point3f(-s.cap_x/1000.0, s.cap_z / 1000.0, -s.cap_y / 1000.0)); // Left
objectPoints.push_back(cv::Point3f(0, 0, 0)); // Top
//Bitmap origin is top left
std::vector<cv::Point2f> trackedPoints;
// Stuff bitmap point in there making sure they match the order of the object point
// Find top most point, that's the one with min Y as we assume our guy's head is not up side down
int topPointIndex = -1;
int minY = std::numeric_limits<int>::max();
for (int i = 0; i < 3; i++)
{
if (iImagePoints[i][1]<minY)
{
minY = iImagePoints[i][1];
topPointIndex = i;
}
}
int rightPointIndex = -1;
int maxX = 0;
// Find right most point
for (int i = 0; i < 3; i++)
{
// Excluding top most point
if (i!=topPointIndex && iImagePoints[i][0] > maxX)
{
maxX = iImagePoints[i][0];
rightPointIndex = i;
}
}
// Find left most point
int leftPointIndex = -1;
for (int i = 0; i < 3; i++)
{
// Excluding top most point
if (i != topPointIndex && i != rightPointIndex)
{
leftPointIndex = i;
break;
}
}
//
trackedPoints.push_back(cv::Point2f(iImagePoints[rightPointIndex][0], iImagePoints[rightPointIndex][1]));
trackedPoints.push_back(cv::Point2f(iImagePoints[leftPointIndex][0], iImagePoints[leftPointIndex][1]));
trackedPoints.push_back(cv::Point2f(iImagePoints[topPointIndex][0], iImagePoints[topPointIndex][1]));
std::cout << "Object: " << objectPoints << "\n";
std::cout << "Points: " << trackedPoints << "\n";
// Create our camera matrix
// TODO: Just do that once, use data member instead
// Double or Float?
cv::Mat cameraMatrix;
cameraMatrix.create(3, 3, CV_64FC1);
cameraMatrix.setTo(cv::Scalar(0));
cameraMatrix.at<double>(0, 0) = camera->info.focalLengthX;
cameraMatrix.at<double>(1, 1) = camera->info.focalLengthY;
cameraMatrix.at<double>(0, 2) = camera->info.principalPointX;
cameraMatrix.at<double>(1, 2) = camera->info.principalPointY;
cameraMatrix.at<double>(2, 2) = 1;
// Create distortion cooefficients
cv::Mat distCoeffs = cv::Mat::zeros(8, 1, CV_64FC1);
// As per OpenCV docs they should be thus: k1, k2, p1, p2, k3, k4, k5, k6
distCoeffs.at<double>(0, 0) = 0; // Radial first order
distCoeffs.at<double>(1, 0) = camera->info.radialDistortionSecondOrder; // Radial second order
distCoeffs.at<double>(2, 0) = 0; // Tangential first order
distCoeffs.at<double>(3, 0) = 0; // Tangential second order
distCoeffs.at<double>(4, 0) = 0; // Radial third order
distCoeffs.at<double>(5, 0) = camera->info.radialDistortionFourthOrder; // Radial fourth order
distCoeffs.at<double>(6, 0) = 0; // Radial fith order
distCoeffs.at<double>(7, 0) = camera->info.radialDistortionSixthOrder; // Radial sixth order
// Define our solution arrays
// They will receive up to 4 solutions for our P3P problem
std::vector<cv::Mat> rvecs, tvecs;
// TODO: try SOLVEPNP_AP3P too
int solutionCount = cv::solveP3P(objectPoints, trackedPoints, cameraMatrix, distCoeffs, rvecs, tvecs, cv::SOLVEPNP_P3P);
if (solutionCount > 0)
{
std::cout << "Solution count: " << solutionCount << "\n";
// Find the solution we want
for (int i = 0; i < solutionCount; i++)
{
std::cout << "Translation:\n";
std::cout << tvecs.at(i);
std::cout << "\n";
std::cout << "Rotation:\n";
//std::cout << rvecs.at(i);
cv::Mat rotationCameraMatrix;
cv::Rodrigues(rvecs[i], rotationCameraMatrix);
cv::Vec3d angles;
getEulerAngles(rotationCameraMatrix,angles);
//cv::Vec3f angles=EulerAngles(quaternion);
std::cout << angles;
std::cout << "\n";
}
std::cout << "\n";
}
// TODO: Work out rotation angles
// TODO: Choose the one solution that makes sense for us
}
QMutexLocker l2(&data_lock);
X_CM = point_tracker.pose();
}
if (preview_visible)
{
const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
Affine X_MH(mat33::eye(), vec3(s.t_MH_x, s.t_MH_y, s.t_MH_z));
Affine X_GH = X_CM * X_MH;
vec3 p = X_GH.t; // head (center?) position in global space
if (p[2] > f(.1))
preview_frame->draw_head_center((p[0] * fx) / p[2], (p[1] * fx) / p[2]);
widget->update_image(preview_frame->get_bitmap());
auto [ w, h ] = widget->preview_size();
if (w != preview_width || h != preview_height)
{
preview_width = w; preview_height = h;
preview_frame = traits->make_preview(w, h);
}
}
}
}
}
bool Tracker_PT::maybe_reopen_camera()
{
QMutexLocker l(&camera_mtx);
return camera->start(s.camera_name,
s.cam_fps, s.cam_res_x, s.cam_res_y);
}
void Tracker_PT::set_fov(int value)
{
QMutexLocker l(&camera_mtx);
camera->set_fov(value);
}
module_status Tracker_PT::start_tracker(QFrame* video_frame)
{
//video_frame->setAttribute(Qt::WA_NativeWindow);
widget = std::make_unique<video_widget>(video_frame);
layout = std::make_unique<QHBoxLayout>(video_frame);
layout->setContentsMargins(0, 0, 0, 0);
layout->addWidget(widget.get());
video_frame->setLayout(layout.get());
//video_widget->resize(video_frame->width(), video_frame->height());
video_frame->show();
start(QThread::HighPriority);
return {};
}
void Tracker_PT::data(double *data)
{
if (ever_success.load(std::memory_order_relaxed))
{
Affine X_CM;
{
QMutexLocker l(&data_lock);
X_CM = point_tracker.pose();
}
Affine X_MH(mat33::eye(), vec3(s.t_MH_x, s.t_MH_y, s.t_MH_z));
Affine X_GH(X_CM * X_MH);
// translate rotation matrix from opengl (G) to roll-pitch-yaw (E) frame
// -z -> x, y -> z, x -> -y
mat33 R_EG(0, 0,-1,
-1, 0, 0,
0, 1, 0);
mat33 R(R_EG * X_GH.R * R_EG.t());
// get translation(s)
const vec3& t = X_GH.t;
// extract rotation angles
auto r00 = (double)R(0, 0);
auto r10 = (double)R(1,0), r20 = (double)R(2,0);
auto r21 = (double)R(2,1), r22 = (double)R(2,2);
double beta = atan2(-r20, sqrt(r21*r21 + r22*r22));
double alpha = atan2(r10, r00);
double gamma = atan2(r21, r22);
constexpr double rad2deg = 180/M_PI;
data[Yaw] = rad2deg * alpha;
data[Pitch] = -rad2deg * beta;
data[Roll] = rad2deg * gamma;
// convert to cm
data[TX] = (double)t[0] / 10;
data[TY] = (double)t[1] / 10;
data[TZ] = (double)t[2] / 10;
}
}
bool Tracker_PT::center()
{
QMutexLocker l(¢er_lock);
point_tracker.reset_state();
return false;
}
int Tracker_PT::get_n_points()
{
return (int)point_count.load(std::memory_order_relaxed);
}
bool Tracker_PT::get_cam_info(pt_camera_info& info)
{
QMutexLocker l(&camera_mtx);
bool ret;
std::tie(ret, info) = camera->get_info();
return ret;
}
Affine Tracker_PT::pose() const
{
QMutexLocker l(&data_lock);
return point_tracker.pose();
}
} // ns pt_impl
|