summaryrefslogtreecommitdiffhomepage
path: root/tracker-pt/point_extractor.cpp
blob: afd9c0eb69a11697c9f5f09230f70f2c4ace86c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/* Copyright (c) 2012 Patrick Ruoff
 * Copyright (c) 2015-2016 Stanislaw Halik <sthalik@misaki.pl>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "point_extractor.h"
#include <QDebug>

#ifdef DEBUG_EXTRACTION
#   include "opentrack-compat/timer.hpp"
#endif

#include <opencv2/highgui.hpp>

#include <cmath>
#include <algorithm>
#include <cinttypes>

PointExtractor::PointExtractor()
{
    blobs.reserve(max_blobs);
}

void PointExtractor::extract_points(cv::Mat& frame, std::vector<PointExtractor::vec2>& points)
{
    using std::sqrt;
    using std::max;
    using std::round;
    using std::sort;

    const int W = frame.cols;
    const int H = frame.rows;

    if (frame_gray.rows != frame.rows || frame_gray.cols != frame.cols)
    {
        frame_gray = cv::Mat(frame.rows, frame.cols, CV_8U);
        frame_bin = cv::Mat(frame.rows, frame.cols, CV_8U);
        frame_blobs = cv::Mat(frame.rows, frame.cols, CV_8U);
    }

    // convert to grayscale
    cv::cvtColor(frame, frame_gray, cv::COLOR_RGB2GRAY);

    const double region_size_min = s.min_point_size;
    const double region_size_max = s.max_point_size;

    if (!s.auto_threshold)
    {
        const int thres = s.threshold;
        cv::threshold(frame_gray, frame_bin, thres, 255, cv::THRESH_BINARY);
    }
    else
    {
        cv::calcHist(std::vector<cv::Mat> { frame_gray },
                     std::vector<int> { 0 },
                     cv::Mat(),
                     hist,
                     std::vector<int> { 256 },
                     std::vector<float> { 0, 256 },
                     false);
        const int sz = hist.cols * hist.rows;
        int thres = 255;
        int cnt = 0;
        constexpr double min_radius = 4;
        constexpr double max_radius = 15;
        const double radius = max(0., (max_radius-min_radius) * s.threshold / 256);
        const int pixels_to_include = int((min_radius + radius)*(min_radius+radius) * 3);
        auto ptr = reinterpret_cast<const float*>(hist.ptr(0));
        for (int i = sz-1; i > 0; i--)
        {
            cnt += ptr[i];
            if (cnt >= pixels_to_include)
            {
                thres = i;
                break;
            }
        }
        //val *= 240./256.;
        //qDebug() << "thres" << thres;

        cv::threshold(frame_gray, frame_bin, thres, 255, CV_THRESH_BINARY);
    }

    blobs.clear();
    frame_bin.copyTo(frame_blobs);

    unsigned idx = 0;
    for (int y=0; y < frame_blobs.rows; y++)
    {
        if (idx > max_blobs) break;

        const unsigned char* ptr_bin = frame_blobs.ptr(y);
        for (int x=0; x < frame_blobs.cols; x++)
        {
            if (idx > max_blobs) break;

            if (ptr_bin[x] != 255)
                continue;
            idx = blobs.size() + 1;
            cv::Rect rect;
            cv::floodFill(frame_blobs,
                          cv::Point(x,y),
                          cv::Scalar(idx),
                          &rect,
                          cv::Scalar(0),
                          cv::Scalar(0),
                          8);
            int m00 = 0;
            int m10 = 0;
            int m01 = 0;
            int cnt = 0;
            int vals = 0;

            for (int i=rect.y; i < (rect.y+rect.height); i++)
            {
                unsigned char* ptr_blobs = frame_blobs.ptr(i);
                const unsigned char* ptr_gray = frame_gray.ptr(i);
                for (int j=rect.x; j < (rect.x+rect.width); j++)
                {
                    if (ptr_blobs[j] != idx) continue;
                    ptr_blobs[j] = 0;
                    const int val = int(ptr_gray[j]);
                    m00 += val;
                    m01 += i * val;
                    m10 += j * val;
                    vals += val;
                    cnt++;
                }
            }
            if (m00 > 0)
            {
                const double radius = sqrt(cnt / pi);
                if (radius > region_size_max || radius < region_size_min)
                    continue;
                const double norm = double(m00);
                blob b(radius, cv::Vec2d(m10 / norm, m01 / norm), vals/sqrt(double(cnt)));
                blobs.push_back(b);
                {
                    char buf[64];
                    sprintf(buf, "%.2fpx", radius);
                    cv::putText(frame,
                                buf,
                                cv::Point((int)round(b.pos[0]+30), (int)round(b.pos[1]+20)),
                                cv::FONT_HERSHEY_DUPLEX,
                                1,
                                cv::Scalar(0, 0, 255),
                                1);
                }
            }
        }
    }

    sort(blobs.begin(), blobs.end(), [](const blob& b1, const blob& b2) -> bool { return b2.brightness < b1.brightness; });

    points.reserve(max_blobs);
    points.clear();

    for (auto& b : blobs)
    {
        vec2 p((b.pos[0] - W/2)/W, -(b.pos[1] - H/2)/W);
        points.push_back(p);
    }
}