1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
#include "path-search.hpp"
#include "global-coords.hpp"
#include "object.hpp"
#include "world.hpp"
#include "RTree-search.hpp"
#include "compat/function2.hpp"
#include <bit>
#include <algorithm>
#include <Corrade/Containers/Optional.h>
#include <Corrade/Containers/PairStl.h>
#include <Magnum/Math/Range.h>
namespace floormat {
namespace {
constexpr auto div = path_search::subdivide_factor;
constexpr int div_BITS = 2;
static_assert(1 << div_BITS == div);
using bbox = path_search::bbox;
constexpr auto never_continue_1 = [](collision_data) constexpr { return path_search_continue::blocked; };
constexpr auto never_continue_ = path_search::pred{never_continue_1};
constexpr auto always_continue_1 = [](collision_data) constexpr { return path_search_continue::pass; };
constexpr auto always_continue_ = path_search::pred{always_continue_1};
constexpr Pair<Vector2i, Vector2i> get_value(Vector2i sz, Vector2ub div, rotation r)
{
fm_debug_assert(div == Vector2ub{div});
constexpr auto half_tile = iTILE_SIZE2/2;
constexpr int offset_W = iTILE_SIZE2.x(), offset_N = iTILE_SIZE2.y();
const auto r_ = (uint8_t)r;
CORRADE_ASSUME(r_ <= (uint8_t)rotation_COUNT);
switch (r_)
{
case (uint8_t)rotation::N: {
const auto space_NS = iTILE_SIZE2.x() - sz.x() >> 1;
auto min_N = Vector2i(-half_tile.x() + space_NS, -offset_N );
auto max_N = Vector2i(min_N.x() + sz.x(), 0 );
return {min_N, max_N};
}
case (uint8_t)rotation::S: {
const auto space_NS = iTILE_SIZE2.x() - sz.x() >> 1;
auto min_S = Vector2i(-half_tile.x() + space_NS, 0 );
auto max_S = Vector2i(min_S.x() + sz.x(), offset_N );
return {min_S, max_S};
}
case (uint8_t)rotation::W: {
const auto space_WE = iTILE_SIZE2.y() - sz.y() >> 1;
auto min_W = Vector2i(-offset_W, -half_tile.y() + space_WE );
auto max_W = Vector2i(0, min_W.y() + sz.y() );
return {min_W, max_W};
}
case (uint8_t)rotation::E: {
const auto space_WE = iTILE_SIZE2.y() - sz.y() >> 1;
auto min_E = Vector2i(0, -half_tile.y() + space_WE );
auto max_E = Vector2i(offset_W, min_E.y() + sz.y() );
return {min_E, max_E};
}
case (uint8_t)rotation_COUNT: {
auto min_C = Vector2i(-(sz.x() >> 1), -(sz.y() >> 1) );
auto max_C = min_C + sz;
return {min_C, max_C};
}
default:
fm_abort("wrong 4-way rotation enum '%d'", (int)r);
}
};
constexpr Vector2i tile_subdiv_at(Vector2i subdiv)
{
constexpr auto tile_start_offset = iTILE_SIZE2/-2;
constexpr auto shift = iTILE_SIZE2/div;
static_assert(shift * div == iTILE_SIZE2);
fm_debug_assert(Vector2ui(subdiv) < Vector2ui{(unsigned)div});
return tile_start_offset + shift * subdiv;
};
struct chunk_subdiv_array { Vector2i min[div], max[div]; };
constexpr chunk_subdiv_array make_chunk_subdiv_array()
{
return {};
}
} // namespace
path_search_result::path_search_result() = default;
auto path_search::never_continue() noexcept -> const pred& { return never_continue_; }
auto path_search::always_continue() noexcept -> const pred& { return always_continue_; }
void path_search::ensure_allocated(chunk_coords a, chunk_coords b)
{
auto new_size = Math::abs(a - b) + Vector2i(3);
auto new_start = Vector2i(std::min(a.x, b.x), std::min(a.y, b.y)) - Vector2i(1);
auto size1 = new_size.product();
fm_debug_assert(size1 > 0);
cache.start = new_start;
if ((size_t)size1 > cache.array.size())
{
cache.array = Array<chunk_tiles_cache>{ValueInit, (size_t)size1};
cache.size = new_size;
}
else
for (auto& x : cache.array)
x = {};
fm_assert(cache.size.product() > 0);
}
bool path_search::is_passable_1(chunk& c, Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
auto& rt = *c.rtree();
bool is_passable = true;
rt.Search(min.data(), max.data(), [&](uint64_t data, const auto&) {
[[maybe_unused]] auto x = std::bit_cast<collision_data>(data);
if (x.data != own_id)
{
if (x.pass != (uint64_t)pass_mode::pass && p(x) != path_search_continue::pass)
{
is_passable = false;
//[[maybe_unused]] auto obj = c.world().find_object(x.data);
return false;
}
}
return true;
});
return is_passable;
}
bool path_search::is_passable(world& w, chunk_coords_ ch0, Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
auto* c = w.at(ch0);
auto neighbors = w.neighbors(ch0);
return is_passable_(c, neighbors, min, max, own_id, p);
}
bool path_search::is_passable_(chunk* c0, const std::array<world::neighbor_pair, 8>& neighbors,
Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
fm_debug_assert(max >= min);
if (c0)
// it's not correct to return true if c == nullptr
// because neighbors can still contain bounding boxes for that tile
if (!is_passable_1(*c0, min, max, own_id, p))
return false;
for (auto i = 0uz; i < 8; i++)
{
auto nb = world::neighbor_offsets[i];
auto* c2 = neighbors[i].c;
if (c2)
{
static_assert(std::size(world::neighbor_offsets) == 8);
constexpr auto chunk_size = iTILE_SIZE2 * TILE_MAX_DIM;
constexpr auto bbox_size = Vector2i(1 << sizeof(Vector2b::Type)*8);
constexpr auto chunk_max = chunk_size + bbox_size;
const auto off = Vector2(nb)*Vector2(chunk_size);
const auto min_ = min - off, max_ = max - off;
if (min_.x() > chunk_max.x() || min_.y() > chunk_max.y())
continue;
if (max_.x() < -bbox_size.x() || max_.y() < -bbox_size.y())
continue;
if (!is_passable_1(*c2, min_, max_, own_id, p))
return false;
}
}
return true;
}
bool path_search::is_passable(world& w, global_coords coord, Vector2b offset, Vector2ub size_,
object_id own_id, const pred& p)
{
auto center = iTILE_SIZE2 * Vector2i(coord.local()) + Vector2i(offset);
auto size = Vector2(size_);
auto min = Vector2(center) - size*.5f, max = min + size;
return is_passable(w, coord, min, max, own_id, p);
}
auto path_search::make_neighbor_tile_bbox(Vector2i coord, Vector2ub own_size, Vector2ub div, rotation r) -> bbox
{
constexpr auto min_size = iTILE_SIZE2*1/4;
static_assert(min_size.x() % 2 == 0);
static_assert(min_size.x() >= subdivide_factor && min_size.y() >= subdivide_factor);
#if 1
if constexpr(std::is_constant_evaluated())
{
constexpr auto sz_ = min_size;
constexpr Vector2i shift = Vector2i(0, 0) * iTILE_SIZE2 + Vector2i(0, 0);
{
constexpr auto N = get_value(sz_, {1,1}, rotation::N);
constexpr auto min_N = N.first() + shift, max_N = N.second() + shift;
{ [[maybe_unused]] constexpr auto N_x = min_N.x(), N_y = min_N.y(); }
{ [[maybe_unused]] constexpr auto N_x = max_N.x(), N_y = max_N.y(); }
}
{
constexpr auto E = get_value(sz_, {1,1}, rotation::E);
constexpr auto min_E = E.first() + shift, max_E = E.second() + shift;
{ [[maybe_unused]] constexpr auto E_x = min_E.x(), E_y = min_E.y(); }
{ [[maybe_unused]] constexpr auto E_x = max_E.x(), E_y = max_E.y(); }
}
{
constexpr auto S = get_value(sz_, {1,1}, rotation::S);
constexpr auto min_S = S.first() + shift, max_S = S.second() + shift;
{ [[maybe_unused]] constexpr auto S_x = min_S.x(), S_y = min_S.y(); }
{ [[maybe_unused]] constexpr auto S_x = max_S.x(), S_y = max_S.y(); }
}
{
constexpr auto W = get_value(sz_, {1,1}, rotation::W);
constexpr auto min_W = W.first() + shift, max_W = W.second() + shift;
{ [[maybe_unused]] constexpr auto W_x = min_W.x(), W_y = min_W.y(); }
{ [[maybe_unused]] constexpr auto W_x = max_W.x(), W_y = max_W.y(); }
}
}
#endif
const auto shift = coord * iTILE_SIZE2;
auto sz = Math::max(Vector2i(own_size), min_size);
auto [min, max] = get_value(sz, div, r);
return { Vector2(min + shift), Vector2(max + shift) };
}
auto path_search::get_walkable_neighbor_tiles(world& w, global_coords coord, Vector2ub size, object_id own_id, const pred& p) -> neighbors
{
auto ch = chunk_coords_{ coord.chunk(), coord.z() };
auto pos = Vector2i(coord.local());
#if 0
if (auto [min, max] = make_neighbor_tile_bbox(pos, size, rotation_COUNT);
!is_passable(w, ch, min, max, own_id))
return {};
#endif
neighbors ns;
using enum rotation;
constexpr struct {
Vector2i off;
rotation r = {};
} nbs[] = {
{ { 0, -1 }, N },
{ { 1, 0 }, E },
{ { 0, 1 }, S },
{ { -1, 0 }, W },
};
for (auto [off, dir] : nbs)
{
auto [min, max] = make_neighbor_tile_bbox(pos, size, {1,1}, dir);
if (is_passable(w, ch, min, max, own_id, p))
ns.neighbors[ns.size++] = coord + off;
}
return ns;
}
auto path_search::bbox_union(bbox bb, Vector2i coord, Vector2b offset, Vector2ub size) -> bbox
{
auto center = coord * iTILE_SIZE2 + Vector2i(offset);
auto min = center - Vector2i(size / 2u);
auto max = center + Vector2i(size);
return {
.min = Math::min(bb.min, Vector2(min)),
.max = Math::max(bb.max, Vector2(max)),
};
}
void path_search::fill_cache_(world& w, chunk_coords_ coord, Vector2ub own_size, object_id own_id, const pred& p)
{
int32_t x = coord.x, y = coord.y;
int8_t z = coord.z;
auto off = Vector2i(x - cache.start.x(), y - cache.start.y());
fm_debug_assert(off >= Vector2i{} && off < cache.size);
auto ch = chunk_coords_{(int16_t)x, (int16_t)y, z};
auto* c = w.at(ch);
auto nb = w.neighbors(ch);
if (!c && std::all_of(nb.begin(), nb.end(), [](const auto& c) { return c.c == nullptr; }))
return;
auto& bits = cache.array[off.y()*cache.size.x()+off.x()];
for (auto i = 0uz; i < TILE_COUNT; i++)
{
auto pos = Vector2i(local_coords{i});
auto bb_N = make_neighbor_tile_bbox(pos, own_size, {1,1}, rotation::N),
bb_W = make_neighbor_tile_bbox(pos, own_size, {1,1}, rotation::W);
bool b_N = is_passable_(c, nb, bb_N.min, bb_N.max, own_id, p),
b_W = is_passable_(c, nb, bb_W.min, bb_W.max, own_id, p);
bits.can_go_north[i] = b_N;
bits.can_go_west[i] = b_W;
}
}
void path_search::fill_cache(world& w, Vector2i cmin, Vector2i cmax, int8_t z,
Vector2ub own_size, object_id own_id, const pred& p)
{
for (int32_t y = cmin.y(); y <= cmax.y(); y++)
for (int32_t x = cmin.x(); x <= cmax.x(); x++)
fill_cache_(w, {(int16_t)x, (int16_t)y, z}, own_size, own_id, p);
}
Optional<path_search_result> path_search::dijkstra(world& w, Vector2ub own_size, object_id own_id,
global_coords from, Vector2b from_offset,
global_coords to, Vector2b to_offset,
const pred& p)
{
fm_assert(from.x <= to.x && from.y <= to.y);
if (from.z() != to.z()) [[unlikely]]
return {};
// todo try removing this eventually
if (from.z() != 0) [[unlikely]]
return {};
// check if obj can actually move at all
if (!is_passable(w, from, from_offset, own_size, own_id, p))
return {};
if (!is_passable(w, to, to_offset, own_size, own_id, p))
return {};
ensure_allocated(from.chunk(), to.chunk());
auto [cmin, cmax] = Math::minmax(Vector2i(from.chunk()) - Vector2i(1, 1),
Vector2i(to.chunk()) + Vector2i(1, 1));
fill_cache(w, cmin, cmax, from.z(), own_size, own_id, p);
// todo...
return {};
}
Optional<path_search_result> path_search::dijkstra(world& w, const object& obj,
global_coords to, Vector2b to_offset,
const pred& p)
{
constexpr auto full_tile = Vector2ub(iTILE_SIZE2*3/4);
auto size = Math::max(obj.bbox_size, full_tile);
// todo fixme
// if bbox_offset is added to obj's offset, then all coordinates in the paths are shifted by bbox_offset.
// maybe add handling to subtract bbox_offset from the returned path.
// for that it needs to be passed into callees separately.
fm_assert(obj.bbox_offset.isZero());
return dijkstra(w, size, obj.id, obj.coord, obj.offset, to, to_offset, p);
}
} // namespace floormat
|