diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/Eigen/src/Core/PermutationMatrix.h | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/Eigen/src/Core/PermutationMatrix.h')
-rw-r--r-- | eigen/Eigen/src/Core/PermutationMatrix.h | 722 |
1 files changed, 722 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Core/PermutationMatrix.h b/eigen/Eigen/src/Core/PermutationMatrix.h new file mode 100644 index 0000000..bda79fa --- /dev/null +++ b/eigen/Eigen/src/Core/PermutationMatrix.h @@ -0,0 +1,722 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PERMUTATIONMATRIX_H +#define EIGEN_PERMUTATIONMATRIX_H + +namespace Eigen { + +template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl; + +/** \class PermutationBase + * \ingroup Core_Module + * + * \brief Base class for permutations + * + * \param Derived the derived class + * + * This class is the base class for all expressions representing a permutation matrix, + * internally stored as a vector of integers. + * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix + * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: + * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] + * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: + * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] + * + * Permutation matrices are square and invertible. + * + * Notice that in addition to the member functions and operators listed here, there also are non-member + * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) + * on either side. + * + * \sa class PermutationMatrix, class PermutationWrapper + */ + +namespace internal { + +template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> +struct permut_matrix_product_retval; +template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> +struct permut_sparsematrix_product_retval; +enum PermPermProduct_t {PermPermProduct}; + +} // end namespace internal + +template<typename Derived> +class PermutationBase : public EigenBase<Derived> +{ + typedef internal::traits<Derived> Traits; + typedef EigenBase<Derived> Base; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + enum { + Flags = Traits::Flags, + CoeffReadCost = Traits::CoeffReadCost, + RowsAtCompileTime = Traits::RowsAtCompileTime, + ColsAtCompileTime = Traits::ColsAtCompileTime, + MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Traits::MaxColsAtCompileTime + }; + typedef typename Traits::Scalar Scalar; + typedef typename Traits::Index Index; + typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime> + DenseMatrixType; + typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index> + PlainPermutationType; + using Base::derived; + #endif + + /** Copies the other permutation into *this */ + template<typename OtherDerived> + Derived& operator=(const PermutationBase<OtherDerived>& other) + { + indices() = other.indices(); + return derived(); + } + + /** Assignment from the Transpositions \a tr */ + template<typename OtherDerived> + Derived& operator=(const TranspositionsBase<OtherDerived>& tr) + { + setIdentity(tr.size()); + for(Index k=size()-1; k>=0; --k) + applyTranspositionOnTheRight(k,tr.coeff(k)); + return derived(); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + Derived& operator=(const PermutationBase& other) + { + indices() = other.indices(); + return derived(); + } + #endif + + /** \returns the number of rows */ + inline Index rows() const { return Index(indices().size()); } + + /** \returns the number of columns */ + inline Index cols() const { return Index(indices().size()); } + + /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ + inline Index size() const { return Index(indices().size()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename DenseDerived> + void evalTo(MatrixBase<DenseDerived>& other) const + { + other.setZero(); + for (int i=0; i<rows();++i) + other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1); + } + #endif + + /** \returns a Matrix object initialized from this permutation matrix. Notice that it + * is inefficient to return this Matrix object by value. For efficiency, favor using + * the Matrix constructor taking EigenBase objects. + */ + DenseMatrixType toDenseMatrix() const + { + return derived(); + } + + /** const version of indices(). */ + const IndicesType& indices() const { return derived().indices(); } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return derived().indices(); } + + /** Resizes to given size. + */ + inline void resize(Index newSize) + { + indices().resize(newSize); + } + + /** Sets *this to be the identity permutation matrix */ + void setIdentity() + { + for(Index i = 0; i < size(); ++i) + indices().coeffRef(i) = i; + } + + /** Sets *this to be the identity permutation matrix of given size. + */ + void setIdentity(Index newSize) + { + resize(newSize); + setIdentity(); + } + + /** Multiplies *this by the transposition \f$(ij)\f$ on the left. + * + * \returns a reference to *this. + * + * \warning This is much slower than applyTranspositionOnTheRight(int,int): + * this has linear complexity and requires a lot of branching. + * + * \sa applyTranspositionOnTheRight(int,int) + */ + Derived& applyTranspositionOnTheLeft(Index i, Index j) + { + eigen_assert(i>=0 && j>=0 && i<size() && j<size()); + for(Index k = 0; k < size(); ++k) + { + if(indices().coeff(k) == i) indices().coeffRef(k) = j; + else if(indices().coeff(k) == j) indices().coeffRef(k) = i; + } + return derived(); + } + + /** Multiplies *this by the transposition \f$(ij)\f$ on the right. + * + * \returns a reference to *this. + * + * This is a fast operation, it only consists in swapping two indices. + * + * \sa applyTranspositionOnTheLeft(int,int) + */ + Derived& applyTranspositionOnTheRight(Index i, Index j) + { + eigen_assert(i>=0 && j>=0 && i<size() && j<size()); + std::swap(indices().coeffRef(i), indices().coeffRef(j)); + return derived(); + } + + /** \returns the inverse permutation matrix. + * + * \note \note_try_to_help_rvo + */ + inline Transpose<PermutationBase> inverse() const + { return derived(); } + /** \returns the tranpose permutation matrix. + * + * \note \note_try_to_help_rvo + */ + inline Transpose<PermutationBase> transpose() const + { return derived(); } + + /**** multiplication helpers to hopefully get RVO ****/ + + +#ifndef EIGEN_PARSED_BY_DOXYGEN + protected: + template<typename OtherDerived> + void assignTranspose(const PermutationBase<OtherDerived>& other) + { + for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i; + } + template<typename Lhs,typename Rhs> + void assignProduct(const Lhs& lhs, const Rhs& rhs) + { + eigen_assert(lhs.cols() == rhs.rows()); + for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i)); + } +#endif + + public: + + /** \returns the product permutation matrix. + * + * \note \note_try_to_help_rvo + */ + template<typename Other> + inline PlainPermutationType operator*(const PermutationBase<Other>& other) const + { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } + + /** \returns the product of a permutation with another inverse permutation. + * + * \note \note_try_to_help_rvo + */ + template<typename Other> + inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const + { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } + + /** \returns the product of an inverse permutation with another permutation. + * + * \note \note_try_to_help_rvo + */ + template<typename Other> friend + inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm) + { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } + + /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation. + * + * This function is O(\c n) procedure allocating a buffer of \c n booleans. + */ + Index determinant() const + { + Index res = 1; + Index n = size(); + Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n); + mask.fill(false); + Index r = 0; + while(r < n) + { + // search for the next seed + while(r<n && mask[r]) r++; + if(r>=n) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + mask.coeffRef(k0) = true; + for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k)) + { + mask.coeffRef(k) = true; + res = -res; + } + } + return res; + } + + protected: + +}; + +/** \class PermutationMatrix + * \ingroup Core_Module + * + * \brief Permutation matrix + * + * \param SizeAtCompileTime the number of rows/cols, or Dynamic + * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. + * \param IndexType the interger type of the indices + * + * This class represents a permutation matrix, internally stored as a vector of integers. + * + * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix + */ + +namespace internal { +template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> +struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > + : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > +{ + typedef IndexType Index; + typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; +}; +} + +template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> +class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > +{ + typedef PermutationBase<PermutationMatrix> Base; + typedef internal::traits<PermutationMatrix> Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + #endif + + inline PermutationMatrix() + {} + + /** Constructs an uninitialized permutation matrix of given size. + */ + inline PermutationMatrix(int size) : m_indices(size) + {} + + /** Copy constructor. */ + template<typename OtherDerived> + inline PermutationMatrix(const PermutationBase<OtherDerived>& other) + : m_indices(other.indices()) {} + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** Standard copy constructor. Defined only to prevent a default copy constructor + * from hiding the other templated constructor */ + inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} + #endif + + /** Generic constructor from expression of the indices. The indices + * array has the meaning that the permutations sends each integer i to indices[i]. + * + * \warning It is your responsibility to check that the indices array that you passes actually + * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the + * array's size. + */ + template<typename Other> + explicit inline PermutationMatrix(const MatrixBase<Other>& a_indices) : m_indices(a_indices) + {} + + /** Convert the Transpositions \a tr to a permutation matrix */ + template<typename Other> + explicit PermutationMatrix(const TranspositionsBase<Other>& tr) + : m_indices(tr.size()) + { + *this = tr; + } + + /** Copies the other permutation into *this */ + template<typename Other> + PermutationMatrix& operator=(const PermutationBase<Other>& other) + { + m_indices = other.indices(); + return *this; + } + + /** Assignment from the Transpositions \a tr */ + template<typename Other> + PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) + { + return Base::operator=(tr.derived()); + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + PermutationMatrix& operator=(const PermutationMatrix& other) + { + m_indices = other.m_indices; + return *this; + } + #endif + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + + /**** multiplication helpers to hopefully get RVO ****/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename Other> + PermutationMatrix(const Transpose<PermutationBase<Other> >& other) + : m_indices(other.nestedPermutation().size()) + { + for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i; + } + template<typename Lhs,typename Rhs> + PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) + : m_indices(lhs.indices().size()) + { + Base::assignProduct(lhs,rhs); + } +#endif + + protected: + + IndicesType m_indices; +}; + + +namespace internal { +template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> +struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > + : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > +{ + typedef IndexType Index; + typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType; +}; +} + +template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> +class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> + : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > +{ + typedef PermutationBase<Map> Base; + typedef internal::traits<Map> Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + typedef typename IndicesType::Scalar Index; + #endif + + inline Map(const Index* indicesPtr) + : m_indices(indicesPtr) + {} + + inline Map(const Index* indicesPtr, Index size) + : m_indices(indicesPtr,size) + {} + + /** Copies the other permutation into *this */ + template<typename Other> + Map& operator=(const PermutationBase<Other>& other) + { return Base::operator=(other.derived()); } + + /** Assignment from the Transpositions \a tr */ + template<typename Other> + Map& operator=(const TranspositionsBase<Other>& tr) + { return Base::operator=(tr.derived()); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** This is a special case of the templated operator=. Its purpose is to + * prevent a default operator= from hiding the templated operator=. + */ + Map& operator=(const Map& other) + { + m_indices = other.m_indices; + return *this; + } + #endif + + /** const version of indices(). */ + const IndicesType& indices() const { return m_indices; } + /** \returns a reference to the stored array representing the permutation. */ + IndicesType& indices() { return m_indices; } + + protected: + + IndicesType m_indices; +}; + +/** \class PermutationWrapper + * \ingroup Core_Module + * + * \brief Class to view a vector of integers as a permutation matrix + * + * \param _IndicesType the type of the vector of integer (can be any compatible expression) + * + * This class allows to view any vector expression of integers as a permutation matrix. + * + * \sa class PermutationBase, class PermutationMatrix + */ + +struct PermutationStorage {}; + +template<typename _IndicesType> class TranspositionsWrapper; +namespace internal { +template<typename _IndicesType> +struct traits<PermutationWrapper<_IndicesType> > +{ + typedef PermutationStorage StorageKind; + typedef typename _IndicesType::Scalar Scalar; + typedef typename _IndicesType::Scalar Index; + typedef _IndicesType IndicesType; + enum { + RowsAtCompileTime = _IndicesType::SizeAtCompileTime, + ColsAtCompileTime = _IndicesType::SizeAtCompileTime, + MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime, + Flags = 0, + CoeffReadCost = _IndicesType::CoeffReadCost + }; +}; +} + +template<typename _IndicesType> +class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> > +{ + typedef PermutationBase<PermutationWrapper> Base; + typedef internal::traits<PermutationWrapper> Traits; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef typename Traits::IndicesType IndicesType; + #endif + + inline PermutationWrapper(const IndicesType& a_indices) + : m_indices(a_indices) + {} + + /** const version of indices(). */ + const typename internal::remove_all<typename IndicesType::Nested>::type& + indices() const { return m_indices; } + + protected: + + typename IndicesType::Nested m_indices; +}; + +/** \returns the matrix with the permutation applied to the columns. + */ +template<typename Derived, typename PermutationDerived> +inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight> +operator*(const MatrixBase<Derived>& matrix, + const PermutationBase<PermutationDerived> &permutation) +{ + return internal::permut_matrix_product_retval + <PermutationDerived, Derived, OnTheRight> + (permutation.derived(), matrix.derived()); +} + +/** \returns the matrix with the permutation applied to the rows. + */ +template<typename Derived, typename PermutationDerived> +inline const internal::permut_matrix_product_retval + <PermutationDerived, Derived, OnTheLeft> +operator*(const PermutationBase<PermutationDerived> &permutation, + const MatrixBase<Derived>& matrix) +{ + return internal::permut_matrix_product_retval + <PermutationDerived, Derived, OnTheLeft> + (permutation.derived(), matrix.derived()); +} + +namespace internal { + +template<typename PermutationType, typename MatrixType, int Side, bool Transposed> +struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > +{ + typedef typename MatrixType::PlainObject ReturnType; +}; + +template<typename PermutationType, typename MatrixType, int Side, bool Transposed> +struct permut_matrix_product_retval + : public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > +{ + typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; + typedef typename MatrixType::Index Index; + + permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) + : m_permutation(perm), m_matrix(matrix) + {} + + inline Index rows() const { return m_matrix.rows(); } + inline Index cols() const { return m_matrix.cols(); } + + template<typename Dest> inline void evalTo(Dest& dst) const + { + const Index n = Side==OnTheLeft ? rows() : cols(); + // FIXME we need an is_same for expression that is not sensitive to constness. For instance + // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true. + const typename Dest::Scalar *dst_data = internal::extract_data(dst); + if( is_same<MatrixTypeNestedCleaned,Dest>::value + && blas_traits<MatrixTypeNestedCleaned>::HasUsableDirectAccess + && blas_traits<Dest>::HasUsableDirectAccess + && dst_data!=0 && dst_data == extract_data(m_matrix)) + { + // apply the permutation inplace + Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size()); + mask.fill(false); + Index r = 0; + while(r < m_permutation.size()) + { + // search for the next seed + while(r<m_permutation.size() && mask[r]) r++; + if(r>=m_permutation.size()) + break; + // we got one, let's follow it until we are back to the seed + Index k0 = r++; + Index kPrev = k0; + mask.coeffRef(k0) = true; + for(Index k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) + { + Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) + .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> + (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); + + mask.coeffRef(k) = true; + kPrev = k; + } + } + } + else + { + for(int i = 0; i < n; ++i) + { + Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> + (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) + + = + + Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime> + (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); + } + } + } + + protected: + const PermutationType& m_permutation; + typename MatrixType::Nested m_matrix; +}; + +/* Template partial specialization for transposed/inverse permutations */ + +template<typename Derived> +struct traits<Transpose<PermutationBase<Derived> > > + : traits<Derived> +{}; + +} // end namespace internal + +template<typename Derived> +class Transpose<PermutationBase<Derived> > + : public EigenBase<Transpose<PermutationBase<Derived> > > +{ + typedef Derived PermutationType; + typedef typename PermutationType::IndicesType IndicesType; + typedef typename PermutationType::PlainPermutationType PlainPermutationType; + public: + + #ifndef EIGEN_PARSED_BY_DOXYGEN + typedef internal::traits<PermutationType> Traits; + typedef typename Derived::DenseMatrixType DenseMatrixType; + enum { + Flags = Traits::Flags, + CoeffReadCost = Traits::CoeffReadCost, + RowsAtCompileTime = Traits::RowsAtCompileTime, + ColsAtCompileTime = Traits::ColsAtCompileTime, + MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = Traits::MaxColsAtCompileTime + }; + typedef typename Traits::Scalar Scalar; + #endif + + Transpose(const PermutationType& p) : m_permutation(p) {} + + inline int rows() const { return m_permutation.rows(); } + inline int cols() const { return m_permutation.cols(); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename DenseDerived> + void evalTo(MatrixBase<DenseDerived>& other) const + { + other.setZero(); + for (int i=0; i<rows();++i) + other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1); + } + #endif + + /** \return the equivalent permutation matrix */ + PlainPermutationType eval() const { return *this; } + + DenseMatrixType toDenseMatrix() const { return *this; } + + /** \returns the matrix with the inverse permutation applied to the columns. + */ + template<typename OtherDerived> friend + inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true> + operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm) + { + return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived()); + } + + /** \returns the matrix with the inverse permutation applied to the rows. + */ + template<typename OtherDerived> + inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true> + operator*(const MatrixBase<OtherDerived>& matrix) const + { + return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived()); + } + + const PermutationType& nestedPermutation() const { return m_permutation; } + + protected: + const PermutationType& m_permutation; +}; + +template<typename Derived> +const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const +{ + return derived(); +} + +} // end namespace Eigen + +#endif // EIGEN_PERMUTATIONMATRIX_H |