summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/Core/util/IntegralConstant.h
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2018-07-03 07:37:12 +0200
committerStanislaw Halik <sthalik@misaki.pl>2018-07-03 08:13:09 +0200
commit88534ba623421c956d8ffcda2d27f41d704d15ef (patch)
treefccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/Eigen/src/Core/util/IntegralConstant.h
parent3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff)
update eigen
Diffstat (limited to 'eigen/Eigen/src/Core/util/IntegralConstant.h')
-rw-r--r--eigen/Eigen/src/Core/util/IntegralConstant.h270
1 files changed, 0 insertions, 270 deletions
diff --git a/eigen/Eigen/src/Core/util/IntegralConstant.h b/eigen/Eigen/src/Core/util/IntegralConstant.h
deleted file mode 100644
index 78a4705..0000000
--- a/eigen/Eigen/src/Core/util/IntegralConstant.h
+++ /dev/null
@@ -1,270 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_INTEGRAL_CONSTANT_H
-#define EIGEN_INTEGRAL_CONSTANT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<int N> class FixedInt;
-template<int N> class VariableAndFixedInt;
-
-/** \internal
- * \class FixedInt
- *
- * This class embeds a compile-time integer \c N.
- *
- * It is similar to c++11 std::integral_constant<int,N> but with some additional features
- * such as:
- * - implicit conversion to int
- * - arithmetic and some bitwise operators: -, +, *, /, %, &, |
- * - c++98/14 compatibility with fix<N> and fix<N>() syntax to define integral constants.
- *
- * It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to
- * be created by the user using Eigen::fix<N> or Eigen::fix<N>(). In C++98-11, the former syntax does
- * not create a FixedInt<N> instance but rather a point to function that needs to be \em cleaned-up
- * using the generic helper:
- * \code
- * internal::cleanup_index_type<T>::type
- * internal::cleanup_index_type<T,DynamicKey>::type
- * \endcode
- * where T can a FixedInt<N>, a pointer to function FixedInt<N> (*)(), or numerous other integer-like representations.
- * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
- *
- * For convenience, you can extract the compile-time value \c N in a generic way using the following helper:
- * \code
- * internal::get_fixed_value<T,DefaultVal>::value
- * \endcode
- * that will give you \c N if T equals FixedInt<N> or FixedInt<N> (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
- *
- * \sa fix<N>, class VariableAndFixedInt
- */
-template<int N> class FixedInt
-{
-public:
- static const int value = N;
- operator int() const { return value; }
- FixedInt() {}
- FixedInt( VariableAndFixedInt<N> other) {
- EIGEN_ONLY_USED_FOR_DEBUG(other);
- eigen_internal_assert(int(other)==N);
- }
-
- FixedInt<-N> operator-() const { return FixedInt<-N>(); }
- template<int M>
- FixedInt<N+M> operator+( FixedInt<M>) const { return FixedInt<N+M>(); }
- template<int M>
- FixedInt<N-M> operator-( FixedInt<M>) const { return FixedInt<N-M>(); }
- template<int M>
- FixedInt<N*M> operator*( FixedInt<M>) const { return FixedInt<N*M>(); }
- template<int M>
- FixedInt<N/M> operator/( FixedInt<M>) const { return FixedInt<N/M>(); }
- template<int M>
- FixedInt<N%M> operator%( FixedInt<M>) const { return FixedInt<N%M>(); }
- template<int M>
- FixedInt<N|M> operator|( FixedInt<M>) const { return FixedInt<N|M>(); }
- template<int M>
- FixedInt<N&M> operator&( FixedInt<M>) const { return FixedInt<N&M>(); }
-
-#if EIGEN_HAS_CXX14
- // Needed in C++14 to allow fix<N>():
- FixedInt operator() () const { return *this; }
-
- VariableAndFixedInt<N> operator() (int val) const { return VariableAndFixedInt<N>(val); }
-#else
- FixedInt ( FixedInt<N> (*)() ) {}
-#endif
-
-#if EIGEN_HAS_CXX11
- FixedInt(std::integral_constant<int,N>) {}
-#endif
-};
-
-/** \internal
- * \class VariableAndFixedInt
- *
- * This class embeds both a compile-time integer \c N and a runtime integer.
- * Both values are supposed to be equal unless the compile-time value \c N has a special
- * value meaning that the runtime-value should be used. Depending on the context, this special
- * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for
- * quantities that can be negative).
- *
- * It is the return-type of the function Eigen::fix<N>(int), and most of the time this is the only
- * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt.
- * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert
- * it to either a true compile-time quantity (i.e. a FixedInt<N>), or to a runtime quantity (e.g., an Index)
- * using the following generic helper:
- * \code
- * internal::cleanup_index_type<T>::type
- * internal::cleanup_index_type<T,DynamicKey>::type
- * \endcode
- * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations.
- * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
- *
- * For convenience, you can also extract the compile-time value \c N using the following helper:
- * \code
- * internal::get_fixed_value<T,DefaultVal>::value
- * \endcode
- * that will give you \c N if T equals VariableAndFixedInt<N>, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
- *
- * \sa fix<N>(int), class FixedInt
- */
-template<int N> class VariableAndFixedInt
-{
-public:
- static const int value = N;
- operator int() const { return m_value; }
- VariableAndFixedInt(int val) { m_value = val; }
-protected:
- int m_value;
-};
-
-template<typename T, int Default=Dynamic> struct get_fixed_value {
- static const int value = Default;
-};
-
-template<int N,int Default> struct get_fixed_value<FixedInt<N>,Default> {
- static const int value = N;
-};
-
-#if !EIGEN_HAS_CXX14
-template<int N,int Default> struct get_fixed_value<FixedInt<N> (*)(),Default> {
- static const int value = N;
-};
-#endif
-
-template<int N,int Default> struct get_fixed_value<VariableAndFixedInt<N>,Default> {
- static const int value = N ;
-};
-
-template<typename T, int N, int Default>
-struct get_fixed_value<variable_if_dynamic<T,N>,Default> {
- static const int value = N;
-};
-
-template<typename T> EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; }
-#if !EIGEN_HAS_CXX14
-template<int N> EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt<N> (*)()) { return N; }
-#endif
-
-// Cleanup integer/FixedInt/VariableAndFixedInt/etc types:
-
-// By default, no cleanup:
-template<typename T, int DynamicKey=Dynamic, typename EnableIf=void> struct cleanup_index_type { typedef T type; };
-
-// Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index
-template<typename T, int DynamicKey> struct cleanup_index_type<T,DynamicKey,typename internal::enable_if<internal::is_integral<T>::value>::type> { typedef Index type; };
-
-#if !EIGEN_HAS_CXX14
-// In c++98/c++11, fix<N> is a pointer to function that we better cleanup to a true FixedInt<N>:
-template<int N, int DynamicKey> struct cleanup_index_type<FixedInt<N> (*)(), DynamicKey> { typedef FixedInt<N> type; };
-#endif
-
-// If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value:
-template<int N, int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<N>, DynamicKey> { typedef FixedInt<N> type; };
-// If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index):
-template<int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<DynamicKey>, DynamicKey> { typedef Index type; };
-
-#if EIGEN_HAS_CXX11
-template<int N, int DynamicKey> struct cleanup_index_type<std::integral_constant<int,N>, DynamicKey> { typedef FixedInt<N> type; };
-#endif
-
-} // end namespace internal
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-#if EIGEN_HAS_CXX14
-template<int N>
-static const internal::FixedInt<N> fix{};
-#else
-template<int N>
-inline internal::FixedInt<N> fix() { return internal::FixedInt<N>(); }
-
-// The generic typename T is mandatory. Otherwise, a code like fix<N> could refer to either the function above or this next overload.
-// This way a code like fix<N> can only refer to the previous function.
-template<int N,typename T>
-inline internal::VariableAndFixedInt<N> fix(T val) { return internal::VariableAndFixedInt<N>(val); }
-#endif
-
-#else // EIGEN_PARSED_BY_DOXYGEN
-
-/** \var fix<N>()
- * \ingroup Core_Module
- *
- * This \em identifier permits to construct an object embedding a compile-time integer \c N.
- *
- * \tparam N the compile-time integer value
- *
- * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them:
- * \code
- * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1]
- * \endcode
- *
- * See also the function fix(int) to pass both a compile-time and runtime value.
- *
- * In c++14, it is implemented as:
- * \code
- * template<int N> static const internal::FixedInt<N> fix{};
- * \endcode
- * where internal::FixedInt<N> is an internal template class similar to
- * <a href="http://en.cppreference.com/w/cpp/types/integral_constant">\c std::integral_constant </a><tt> <int,N> </tt>
- * Here, \c fix<N> is thus an object of type \c internal::FixedInt<N>.
- *
- * In c++98/11, it is implemented as a function:
- * \code
- * template<int N> inline internal::FixedInt<N> fix();
- * \endcode
- * Here internal::FixedInt<N> is thus a pointer to function.
- *
- * If for some reason you want a true object in c++98 then you can write: \code fix<N>() \endcode which is also valid in c++14.
- *
- * \sa fix<N>(int), seq, seqN
- */
-template<int N>
-static const auto fix();
-
-/** \fn fix<N>(int)
- * \ingroup Core_Module
- *
- * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val.
- *
- * \tparam N the compile-time integer value
- * \param val the fallback runtime integer value
- *
- * This function is a more general version of the \ref fix identifier/function that can be used in template code
- * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers
- * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers
- * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val
- * will be used as a fallback.
- *
- * A typical use case would be:
- * \code
- * template<typename Derived> void foo(const MatrixBase<Derived> &mat) {
- * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2;
- * const int n = mat.rows()/2;
- * ... mat( seqN(0,fix<N>(n) ) ...;
- * }
- * \endcode
- * In this example, the function Eigen::seqN knows that the second argument is expected to be a size.
- * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n.
- * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>.
- *
- * \sa fix, seqN, class ArithmeticSequence
- */
-template<int N>
-static const auto fix(int val);
-
-#endif // EIGEN_PARSED_BY_DOXYGEN
-
-} // end namespace Eigen
-
-#endif // EIGEN_INTEGRAL_CONSTANT_H