diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/Eigen/src/Eigen2Support/Geometry/Transform.h | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/Eigen/src/Eigen2Support/Geometry/Transform.h')
-rw-r--r-- | eigen/Eigen/src/Eigen2Support/Geometry/Transform.h | 786 |
1 files changed, 786 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h b/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h new file mode 100644 index 0000000..fab60b2 --- /dev/null +++ b/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h @@ -0,0 +1,786 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway + +namespace Eigen { + +// Note that we have to pass Dim and HDim because it is not allowed to use a template +// parameter to define a template specialization. To be more precise, in the following +// specializations, it is not allowed to use Dim+1 instead of HDim. +template< typename Other, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct ei_transform_product_impl; + +/** \geometry_module \ingroup Geometry_Module + * + * \class Transform + * + * \brief Represents an homogeneous transformation in a N dimensional space + * + * \param _Scalar the scalar type, i.e., the type of the coefficients + * \param _Dim the dimension of the space + * + * The homography is internally represented and stored as a (Dim+1)^2 matrix which + * is available through the matrix() method. + * + * Conversion methods from/to Qt's QMatrix and QTransform are available if the + * preprocessor token EIGEN_QT_SUPPORT is defined. + * + * \sa class Matrix, class Quaternion + */ +template<typename _Scalar, int _Dim> +class Transform +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) + enum { + Dim = _Dim, ///< space dimension in which the transformation holds + HDim = _Dim+1 ///< size of a respective homogeneous vector + }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + /** type of the matrix used to represent the transformation */ + typedef Matrix<Scalar,HDim,HDim> MatrixType; + /** type of the matrix used to represent the linear part of the transformation */ + typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; + /** type of read/write reference to the linear part of the transformation */ + typedef Block<MatrixType,Dim,Dim> LinearPart; + /** type of read/write reference to the linear part of the transformation */ + typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart; + /** type of a vector */ + typedef Matrix<Scalar,Dim,1> VectorType; + /** type of a read/write reference to the translation part of the rotation */ + typedef Block<MatrixType,Dim,1> TranslationPart; + /** type of a read/write reference to the translation part of the rotation */ + typedef const Block<const MatrixType,Dim,1> ConstTranslationPart; + /** corresponding translation type */ + typedef Translation<Scalar,Dim> TranslationType; + /** corresponding scaling transformation type */ + typedef Scaling<Scalar,Dim> ScalingType; + +protected: + + MatrixType m_matrix; + +public: + + /** Default constructor without initialization of the coefficients. */ + inline Transform() { } + + inline Transform(const Transform& other) + { + m_matrix = other.m_matrix; + } + + inline explicit Transform(const TranslationType& t) { *this = t; } + inline explicit Transform(const ScalingType& s) { *this = s; } + template<typename Derived> + inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } + + inline Transform& operator=(const Transform& other) + { m_matrix = other.m_matrix; return *this; } + + template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value + struct construct_from_matrix + { + static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) + { + transform->matrix() = other; + } + }; + + template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true> + { + static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) + { + transform->linear() = other; + transform->translation().setZero(); + transform->matrix()(Dim,Dim) = Scalar(1); + transform->matrix().template block<1,Dim>(Dim,0).setZero(); + } + }; + + /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ + template<typename OtherDerived> + inline explicit Transform(const MatrixBase<OtherDerived>& other) + { + construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other); + } + + /** Set \c *this from a (Dim+1)^2 matrix. */ + template<typename OtherDerived> + inline Transform& operator=(const MatrixBase<OtherDerived>& other) + { m_matrix = other; return *this; } + + #ifdef EIGEN_QT_SUPPORT + inline Transform(const QMatrix& other); + inline Transform& operator=(const QMatrix& other); + inline QMatrix toQMatrix(void) const; + inline Transform(const QTransform& other); + inline Transform& operator=(const QTransform& other); + inline QTransform toQTransform(void) const; + #endif + + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operaror(int,int) const */ + inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operaror(int,int) */ + inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } + + /** \returns a read-only expression of the transformation matrix */ + inline const MatrixType& matrix() const { return m_matrix; } + /** \returns a writable expression of the transformation matrix */ + inline MatrixType& matrix() { return m_matrix; } + + /** \returns a read-only expression of the linear (linear) part of the transformation */ + inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } + /** \returns a writable expression of the linear (linear) part of the transformation */ + inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } + + /** \returns a read-only expression of the translation vector of the transformation */ + inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } + /** \returns a writable expression of the translation vector of the transformation */ + inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } + + /** \returns an expression of the product between the transform \c *this and a matrix expression \a other + * + * The right hand side \a other might be either: + * \li a vector of size Dim, + * \li an homogeneous vector of size Dim+1, + * \li a transformation matrix of size Dim+1 x Dim+1. + */ + // note: this function is defined here because some compilers cannot find the respective declaration + template<typename OtherDerived> + inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType + operator * (const MatrixBase<OtherDerived> &other) const + { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); } + + /** \returns the product expression of a transformation matrix \a a times a transform \a b + * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */ + template<typename OtherDerived> + friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type + operator * (const MatrixBase<OtherDerived> &a, const Transform &b) + { return a.derived() * b.matrix(); } + + /** Contatenates two transformations */ + inline const Transform + operator * (const Transform& other) const + { return Transform(m_matrix * other.matrix()); } + + /** \sa MatrixBase::setIdentity() */ + void setIdentity() { m_matrix.setIdentity(); } + static const typename MatrixType::IdentityReturnType Identity() + { + return MatrixType::Identity(); + } + + template<typename OtherDerived> + inline Transform& scale(const MatrixBase<OtherDerived> &other); + + template<typename OtherDerived> + inline Transform& prescale(const MatrixBase<OtherDerived> &other); + + inline Transform& scale(Scalar s); + inline Transform& prescale(Scalar s); + + template<typename OtherDerived> + inline Transform& translate(const MatrixBase<OtherDerived> &other); + + template<typename OtherDerived> + inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); + + template<typename RotationType> + inline Transform& rotate(const RotationType& rotation); + + template<typename RotationType> + inline Transform& prerotate(const RotationType& rotation); + + Transform& shear(Scalar sx, Scalar sy); + Transform& preshear(Scalar sx, Scalar sy); + + inline Transform& operator=(const TranslationType& t); + inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } + inline Transform operator*(const TranslationType& t) const; + + inline Transform& operator=(const ScalingType& t); + inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); } + inline Transform operator*(const ScalingType& s) const; + friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t) + { + Transform res = t; + res.matrix().row(Dim) = t.matrix().row(Dim); + res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy(); + return res; + } + + template<typename Derived> + inline Transform& operator=(const RotationBase<Derived,Dim>& r); + template<typename Derived> + inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } + template<typename Derived> + inline Transform operator*(const RotationBase<Derived,Dim>& r) const; + + LinearMatrixType rotation() const; + template<typename RotationMatrixType, typename ScalingMatrixType> + void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; + template<typename ScalingMatrixType, typename RotationMatrixType> + void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; + + template<typename PositionDerived, typename OrientationType, typename ScaleDerived> + Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, + const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); + + inline const MatrixType inverse(TransformTraits traits = Affine) const; + + /** \returns a const pointer to the column major internal matrix */ + const Scalar* data() const { return m_matrix.data(); } + /** \returns a non-const pointer to the column major internal matrix */ + Scalar* data() { return m_matrix.data(); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const + { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit Transform(const Transform<OtherScalarType,Dim>& other) + { m_matrix = other.matrix().template cast<Scalar>(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const + { return m_matrix.isApprox(other.m_matrix, prec); } + + #ifdef EIGEN_TRANSFORM_PLUGIN + #include EIGEN_TRANSFORM_PLUGIN + #endif + +protected: + +}; + +/** \ingroup Geometry_Module */ +typedef Transform<float,2> Transform2f; +/** \ingroup Geometry_Module */ +typedef Transform<float,3> Transform3f; +/** \ingroup Geometry_Module */ +typedef Transform<double,2> Transform2d; +/** \ingroup Geometry_Module */ +typedef Transform<double,3> Transform3d; + +/************************** +*** Optional QT support *** +**************************/ + +#ifdef EIGEN_QT_SUPPORT +/** Initialises \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>::Transform(const QMatrix& other) +{ + *this = other; +} + +/** Set \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other) +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + 0, 0, 1; + return *this; +} + +/** \returns a QMatrix from \c *this assuming the dimension is 2. + * + * \warning this convertion might loss data if \c *this is not affine + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +QMatrix Transform<Scalar,Dim>::toQMatrix(void) const +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); +} + +/** Initialises \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>::Transform(const QTransform& other) +{ + *this = other; +} + +/** Set \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other) +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + other.m13(), other.m23(), other.m33(); + return *this; +} + +/** \returns a QTransform from \c *this assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template<typename Scalar, int Dim> +QTransform Transform<Scalar,Dim>::toQTransform(void) const +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); +} +#endif + +/********************* +*** Procedural API *** +*********************/ + +/** Applies on the right the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa prescale() + */ +template<typename Scalar, int Dim> +template<typename OtherDerived> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + linear() = (linear() * other.asDiagonal()).lazy(); + return *this; +} + +/** Applies on the right a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa prescale(Scalar) + */ +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s) +{ + linear() *= s; + return *this; +} + +/** Applies on the left the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa scale() + */ +template<typename Scalar, int Dim> +template<typename OtherDerived> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy(); + return *this; +} + +/** Applies on the left a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa scale(Scalar) + */ +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s) +{ + m_matrix.template corner<Dim,HDim>(TopLeft) *= s; + return *this; +} + +/** Applies on the right the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa pretranslate() + */ +template<typename Scalar, int Dim> +template<typename OtherDerived> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + translation() += linear() * other; + return *this; +} + +/** Applies on the left the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa translate() + */ +template<typename Scalar, int Dim> +template<typename OtherDerived> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + translation() += other; + return *this; +} + +/** Applies on the right the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * The template parameter \a RotationType is the type of the rotation which + * must be known by ei_toRotationMatrix<>. + * + * Natively supported types includes: + * - any scalar (2D), + * - a Dim x Dim matrix expression, + * - a Quaternion (3D), + * - a AngleAxis (3D) + * + * This mechanism is easily extendable to support user types such as Euler angles, + * or a pair of Quaternion for 4D rotations. + * + * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) + */ +template<typename Scalar, int Dim> +template<typename RotationType> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::rotate(const RotationType& rotation) +{ + linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation); + return *this; +} + +/** Applies on the left the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * See rotate() for further details. + * + * \sa rotate() + */ +template<typename Scalar, int Dim> +template<typename RotationType> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::prerotate(const RotationType& rotation) +{ + m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) + * m_matrix.template block<Dim,HDim>(0,0); + return *this; +} + +/** Applies on the right the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa preshear() + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + VectorType tmp = linear().col(0)*sy + linear().col(1); + linear() << linear().col(0) + linear().col(1)*sx, tmp; + return *this; +} + +/** Applies on the left the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa shear() + */ +template<typename Scalar, int Dim> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); + return *this; +} + +/****************************************************** +*** Scaling, Translation and Rotation compatibility *** +******************************************************/ + +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t) +{ + linear().setIdentity(); + translation() = t.vector(); + m_matrix.template block<1,Dim>(Dim,0).setZero(); + m_matrix(Dim,Dim) = Scalar(1); + return *this; +} + +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const +{ + Transform res = *this; + res.translate(t.vector()); + return res; +} + +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s) +{ + m_matrix.setZero(); + linear().diagonal() = s.coeffs(); + m_matrix.coeffRef(Dim,Dim) = Scalar(1); + return *this; +} + +template<typename Scalar, int Dim> +inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const +{ + Transform res = *this; + res.scale(s.coeffs()); + return res; +} + +template<typename Scalar, int Dim> +template<typename Derived> +inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r) +{ + linear() = ei_toRotationMatrix<Scalar,Dim>(r); + translation().setZero(); + m_matrix.template block<1,Dim>(Dim,0).setZero(); + m_matrix.coeffRef(Dim,Dim) = Scalar(1); + return *this; +} + +template<typename Scalar, int Dim> +template<typename Derived> +inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const +{ + Transform res = *this; + res.rotate(r.derived()); + return res; +} + +/************************ +*** Special functions *** +************************/ + +/** \returns the rotation part of the transformation + * \nonstableyet + * + * \svd_module + * + * \sa computeRotationScaling(), computeScalingRotation(), class SVD + */ +template<typename Scalar, int Dim> +typename Transform<Scalar,Dim>::LinearMatrixType +Transform<Scalar,Dim>::rotation() const +{ + LinearMatrixType result; + computeRotationScaling(&result, (LinearMatrixType*)0); + return result; +} + + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * \nonstableyet + * + * \svd_module + * + * \sa computeScalingRotation(), rotation(), class SVD + */ +template<typename Scalar, int Dim> +template<typename RotationMatrixType, typename ScalingMatrixType> +void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const +{ + JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 + Matrix<Scalar, Dim, 1> sv(svd.singularValues()); + sv.coeffRef(0) *= x; + if(scaling) + { + scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); + } + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(0) /= x; + rotation->noalias() = m * svd.matrixV().adjoint(); + } +} + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * \nonstableyet + * + * \svd_module + * + * \sa computeRotationScaling(), rotation(), class SVD + */ +template<typename Scalar, int Dim> +template<typename ScalingMatrixType, typename RotationMatrixType> +void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const +{ + JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 + Matrix<Scalar, Dim, 1> sv(svd.singularValues()); + sv.coeffRef(0) *= x; + if(scaling) + { + scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); + } + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(0) /= x; + rotation->noalias() = m * svd.matrixV().adjoint(); + } +} + +/** Convenient method to set \c *this from a position, orientation and scale + * of a 3D object. + */ +template<typename Scalar, int Dim> +template<typename PositionDerived, typename OrientationType, typename ScaleDerived> +Transform<Scalar,Dim>& +Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, + const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) +{ + linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); + linear() *= scale.asDiagonal(); + translation() = position; + m_matrix.template block<1,Dim>(Dim,0).setZero(); + m_matrix(Dim,Dim) = Scalar(1); + return *this; +} + +/** \nonstableyet + * + * \returns the inverse transformation matrix according to some given knowledge + * on \c *this. + * + * \param traits allows to optimize the inversion process when the transformion + * is known to be not a general transformation. The possible values are: + * - Projective if the transformation is not necessarily affine, i.e., if the + * last row is not guaranteed to be [0 ... 0 1] + * - Affine is the default, the last row is assumed to be [0 ... 0 1] + * - Isometry if the transformation is only a concatenations of translations + * and rotations. + * + * \warning unless \a traits is always set to NoShear or NoScaling, this function + * requires the generic inverse method of MatrixBase defined in the LU module. If + * you forget to include this module, then you will get hard to debug linking errors. + * + * \sa MatrixBase::inverse() + */ +template<typename Scalar, int Dim> +inline const typename Transform<Scalar,Dim>::MatrixType +Transform<Scalar,Dim>::inverse(TransformTraits traits) const +{ + if (traits == Projective) + { + return m_matrix.inverse(); + } + else + { + MatrixType res; + if (traits == Affine) + { + res.template corner<Dim,Dim>(TopLeft) = linear().inverse(); + } + else if (traits == Isometry) + { + res.template corner<Dim,Dim>(TopLeft) = linear().transpose(); + } + else + { + ei_assert("invalid traits value in Transform::inverse()"); + } + // translation and remaining parts + res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation(); + res.template corner<1,Dim>(BottomLeft).setZero(); + res.coeffRef(Dim,Dim) = Scalar(1); + return res; + } +} + +/***************************************************** +*** Specializations of operator* with a MatrixBase *** +*****************************************************/ + +template<typename Other, int Dim, int HDim> +struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim> +{ + typedef Transform<typename Other::Scalar,Dim> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; + static ResultType run(const TransformType& tr, const Other& other) + { return tr.matrix() * other; } +}; + +template<typename Other, int Dim, int HDim> +struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim> +{ + typedef Transform<typename Other::Scalar,Dim> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const TransformType& tr, const Other& other) + { + TransformType res; + res.translation() = tr.translation(); + res.matrix().row(Dim) = tr.matrix().row(Dim); + res.linear() = (tr.linear() * other).lazy(); + return res; + } +}; + +template<typename Other, int Dim, int HDim> +struct ei_transform_product_impl<Other,Dim,HDim, HDim,1> +{ + typedef Transform<typename Other::Scalar,Dim> TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; + static ResultType run(const TransformType& tr, const Other& other) + { return tr.matrix() * other; } +}; + +template<typename Other, int Dim, int HDim> +struct ei_transform_product_impl<Other,Dim,HDim, Dim,1> +{ + typedef typename Other::Scalar Scalar; + typedef Transform<Scalar,Dim> TransformType; + typedef Matrix<Scalar,Dim,1> ResultType; + static ResultType run(const TransformType& tr, const Other& other) + { return ((tr.linear() * other) + tr.translation()) + * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); } +}; + +} // end namespace Eigen |