diff options
| author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
|---|---|---|
| committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
| commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
| tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/Eigen/src/Geometry/AngleAxis.h | |
| parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) | |
don't index Eigen
Diffstat (limited to 'eigen/Eigen/src/Geometry/AngleAxis.h')
| -rw-r--r-- | eigen/Eigen/src/Geometry/AngleAxis.h | 247 |
1 files changed, 0 insertions, 247 deletions
diff --git a/eigen/Eigen/src/Geometry/AngleAxis.h b/eigen/Eigen/src/Geometry/AngleAxis.h deleted file mode 100644 index 83ee1be..0000000 --- a/eigen/Eigen/src/Geometry/AngleAxis.h +++ /dev/null @@ -1,247 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ANGLEAXIS_H -#define EIGEN_ANGLEAXIS_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class AngleAxis - * - * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * - * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. - * - * The following two typedefs are provided for convenience: - * \li \c AngleAxisf for \c float - * \li \c AngleAxisd for \c double - * - * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily - * mimic Euler-angles. Here is an example: - * \include AngleAxis_mimic_euler.cpp - * Output: \verbinclude AngleAxis_mimic_euler.out - * - * \note This class is not aimed to be used to store a rotation transformation, - * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) - * and transformation objects. - * - * \sa class Quaternion, class Transform, MatrixBase::UnitX() - */ - -namespace internal { -template<typename _Scalar> struct traits<AngleAxis<_Scalar> > -{ - typedef _Scalar Scalar; -}; -} - -template<typename _Scalar> -class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> -{ - typedef RotationBase<AngleAxis<_Scalar>,3> Base; - -public: - - using Base::operator*; - - enum { Dim = 3 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix<Scalar,3,3> Matrix3; - typedef Matrix<Scalar,3,1> Vector3; - typedef Quaternion<Scalar> QuaternionType; - -protected: - - Vector3 m_axis; - Scalar m_angle; - -public: - - /** Default constructor without initialization. */ - EIGEN_DEVICE_FUNC AngleAxis() {} - /** Constructs and initialize the angle-axis rotation from an \a angle in radian - * and an \a axis which \b must \b be \b normalized. - * - * \warning If the \a axis vector is not normalized, then the angle-axis object - * represents an invalid rotation. */ - template<typename Derived> - EIGEN_DEVICE_FUNC - inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} - /** Constructs and initialize the angle-axis rotation from a quaternion \a q. - * This function implicitly normalizes the quaternion \a q. - */ - template<typename QuatDerived> - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } - /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ - template<typename Derived> - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } - - /** \returns the value of the rotation angle in radian */ - EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } - /** \returns a read-write reference to the stored angle in radian */ - EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } - - /** \returns the rotation axis */ - EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } - /** \returns a read-write reference to the stored rotation axis. - * - * \warning The rotation axis must remain a \b unit vector. - */ - EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const - { return QuaternionType(*this) * QuaternionType(other); } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const - { return QuaternionType(*this) * other; } - - /** Concatenates two rotations */ - friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) - { return a * QuaternionType(b); } - - /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ - EIGEN_DEVICE_FUNC AngleAxis inverse() const - { return AngleAxis(-m_angle, m_axis); } - - template<class QuatDerived> - EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); - template<typename Derived> - EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); - - template<typename Derived> - EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); - EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template<typename NewScalarType> - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const - { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template<typename OtherScalarType> - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) - { - m_axis = other.axis().template cast<Scalar>(); - m_angle = Scalar(other.angle()); - } - - EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const - { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision angle-axis type */ -typedef AngleAxis<float> AngleAxisf; -/** \ingroup Geometry_Module - * double precision angle-axis type */ -typedef AngleAxis<double> AngleAxisd; - -/** Set \c *this from a \b unit quaternion. - * - * The resulting axis is normalized, and the computed angle is in the [0,pi] range. - * - * This function implicitly normalizes the quaternion \a q. - */ -template<typename Scalar> -template<typename QuatDerived> -EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) -{ - EIGEN_USING_STD_MATH(atan2) - EIGEN_USING_STD_MATH(abs) - Scalar n = q.vec().norm(); - if(n<NumTraits<Scalar>::epsilon()) - n = q.vec().stableNorm(); - - if (n != Scalar(0)) - { - m_angle = Scalar(2)*atan2(n, abs(q.w())); - if(q.w() < Scalar(0)) - n = -n; - m_axis = q.vec() / n; - } - else - { - m_angle = Scalar(0); - m_axis << Scalar(1), Scalar(0), Scalar(0); - } - return *this; -} - -/** Set \c *this from a 3x3 rotation matrix \a mat. - */ -template<typename Scalar> -template<typename Derived> -EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) -{ - // Since a direct conversion would not be really faster, - // let's use the robust Quaternion implementation: - return *this = QuaternionType(mat); -} - -/** -* \brief Sets \c *this from a 3x3 rotation matrix. -**/ -template<typename Scalar> -template<typename Derived> -EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) -{ - return *this = QuaternionType(mat); -} - -/** Constructs and \returns an equivalent 3x3 rotation matrix. - */ -template<typename Scalar> -typename AngleAxis<Scalar>::Matrix3 -EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const -{ - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - Matrix3 res; - Vector3 sin_axis = sin(m_angle) * m_axis; - Scalar c = cos(m_angle); - Vector3 cos1_axis = (Scalar(1)-c) * m_axis; - - Scalar tmp; - tmp = cos1_axis.x() * m_axis.y(); - res.coeffRef(0,1) = tmp - sin_axis.z(); - res.coeffRef(1,0) = tmp + sin_axis.z(); - - tmp = cos1_axis.x() * m_axis.z(); - res.coeffRef(0,2) = tmp + sin_axis.y(); - res.coeffRef(2,0) = tmp - sin_axis.y(); - - tmp = cos1_axis.y() * m_axis.z(); - res.coeffRef(1,2) = tmp - sin_axis.x(); - res.coeffRef(2,1) = tmp + sin_axis.x(); - - res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; - - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_ANGLEAXIS_H |
