diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/Eigen/src/Geometry/EulerAngles.h | |
parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) |
don't index Eigen
Diffstat (limited to 'eigen/Eigen/src/Geometry/EulerAngles.h')
-rw-r--r-- | eigen/Eigen/src/Geometry/EulerAngles.h | 114 |
1 files changed, 0 insertions, 114 deletions
diff --git a/eigen/Eigen/src/Geometry/EulerAngles.h b/eigen/Eigen/src/Geometry/EulerAngles.h deleted file mode 100644 index c633268..0000000 --- a/eigen/Eigen/src/Geometry/EulerAngles.h +++ /dev/null @@ -1,114 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_EULERANGLES_H -#define EIGEN_EULERANGLES_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * - * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) - * - * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. - * For instance, in: - * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode - * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that - * we have the following equality: - * \code - * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) - * * AngleAxisf(ea[1], Vector3f::UnitX()) - * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode - * This corresponds to the right-multiply conventions (with right hand side frames). - * - * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. - * - * \sa class AngleAxis - */ -template<typename Derived> -EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> -MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const -{ - EIGEN_USING_STD_MATH(atan2) - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - /* Implemented from Graphics Gems IV */ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) - - Matrix<Scalar,3,1> res; - typedef Matrix<typename Derived::Scalar,2,1> Vector2; - - const Index odd = ((a0+1)%3 == a1) ? 0 : 1; - const Index i = a0; - const Index j = (a0 + 1 + odd)%3; - const Index k = (a0 + 2 - odd)%3; - - if (a0==a2) - { - res[0] = atan2(coeff(j,i), coeff(k,i)); - if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) - { - if(res[0] > Scalar(0)) { - res[0] -= Scalar(EIGEN_PI); - } - else { - res[0] += Scalar(EIGEN_PI); - } - Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); - res[1] = -atan2(s2, coeff(i,i)); - } - else - { - Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); - res[1] = atan2(s2, coeff(i,i)); - } - - // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, - // we can compute their respective rotation, and apply its inverse to M. Since the result must - // be a rotation around x, we have: - // - // c2 s1.s2 c1.s2 1 0 0 - // 0 c1 -s1 * M = 0 c3 s3 - // -s2 s1.c2 c1.c2 0 -s3 c3 - // - // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 - - Scalar s1 = sin(res[0]); - Scalar c1 = cos(res[0]); - res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); - } - else - { - res[0] = atan2(coeff(j,k), coeff(k,k)); - Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); - if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) { - if(res[0] > Scalar(0)) { - res[0] -= Scalar(EIGEN_PI); - } - else { - res[0] += Scalar(EIGEN_PI); - } - res[1] = atan2(-coeff(i,k), -c2); - } - else - res[1] = atan2(-coeff(i,k), c2); - Scalar s1 = sin(res[0]); - Scalar c1 = cos(res[0]); - res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); - } - if (!odd) - res = -res; - - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_EULERANGLES_H |