summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/IterativeLinearSolvers
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
committerStanislaw Halik <sthalik@misaki.pl>2017-03-25 14:17:07 +0100
commit35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch)
tree7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/Eigen/src/IterativeLinearSolvers
parent6e8724193e40a932faf9064b664b529e7301c578 (diff)
update
Diffstat (limited to 'eigen/Eigen/src/IterativeLinearSolvers')
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h114
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h97
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/CMakeLists.txt6
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h137
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h400
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h138
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h340
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h216
-rw-r--r--eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h115
9 files changed, 1199 insertions, 364 deletions
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
index 1f3c060..358444a 100644
--- a/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
+++ b/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -17,33 +17,37 @@ namespace Eigen {
*
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
- * \code
- * A.diagonal().asDiagonal() . x = b
- * \endcode
+ \code
+ A.diagonal().asDiagonal() . x = b
+ \endcode
*
* \tparam _Scalar the type of the scalar.
*
+ * \implsparsesolverconcept
+ *
* This preconditioner is suitable for both selfadjoint and general problems.
* The diagonal entries are pre-inverted and stored into a dense vector.
*
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
*
+ * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
*/
template <typename _Scalar>
class DiagonalPreconditioner
{
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef typename Vector::Index Index;
-
public:
- // this typedef is only to export the scalar type and compile-time dimensions to solve_retval
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+ typedef typename Vector::StorageIndex StorageIndex;
+ enum {
+ ColsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic
+ };
DiagonalPreconditioner() : m_isInitialized(false) {}
template<typename MatType>
- DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
+ explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
{
compute(mat);
}
@@ -80,46 +84,102 @@ class DiagonalPreconditioner
return factorize(mat);
}
+ /** \internal */
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_invdiag.array() * b.array() ;
}
- template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
+ template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
eigen_assert(m_invdiag.size()==b.rows()
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
+ return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
}
+
+ ComputationInfo info() { return Success; }
protected:
Vector m_invdiag;
bool m_isInitialized;
};
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
- : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
+/** \ingroup IterativeLinearSolvers_Module
+ * \brief Jacobi preconditioner for LeastSquaresConjugateGradient
+ *
+ * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix.
+ * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
+ \code
+ (A.adjoint() * A).diagonal().asDiagonal() * x = b
+ \endcode
+ *
+ * \tparam _Scalar the type of the scalar.
+ *
+ * \implsparsesolverconcept
+ *
+ * The diagonal entries are pre-inverted and stored into a dense vector.
+ *
+ * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
+ */
+template <typename _Scalar>
+class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
{
- typedef DiagonalPreconditioner<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef DiagonalPreconditioner<_Scalar> Base;
+ using Base::m_invdiag;
+ public:
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
+ LeastSquareDiagonalPreconditioner() : Base() {}
+
+ template<typename MatType>
+ explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
+ {
+ compute(mat);
+ }
+
+ template<typename MatType>
+ LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
+ {
+ return *this;
+ }
+
+ template<typename MatType>
+ LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
+ {
+ // Compute the inverse squared-norm of each column of mat
+ m_invdiag.resize(mat.cols());
+ for(Index j=0; j<mat.outerSize(); ++j)
+ {
+ RealScalar sum = mat.innerVector(j).squaredNorm();
+ if(sum>0)
+ m_invdiag(j) = RealScalar(1)/sum;
+ else
+ m_invdiag(j) = RealScalar(1);
+ }
+ Base::m_isInitialized = true;
+ return *this;
+ }
+
+ template<typename MatType>
+ LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
+ {
+ return factorize(mat);
+ }
+
+ ComputationInfo info() { return Success; }
-}
+ protected:
+};
/** \ingroup IterativeLinearSolvers_Module
* \brief A naive preconditioner which approximates any matrix as the identity matrix
*
+ * \implsparsesolverconcept
+ *
* \sa class DiagonalPreconditioner
*/
class IdentityPreconditioner
@@ -129,7 +189,7 @@ class IdentityPreconditioner
IdentityPreconditioner() {}
template<typename MatrixType>
- IdentityPreconditioner(const MatrixType& ) {}
+ explicit IdentityPreconditioner(const MatrixType& ) {}
template<typename MatrixType>
IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
@@ -142,6 +202,8 @@ class IdentityPreconditioner
template<typename Rhs>
inline const Rhs& solve(const Rhs& b) const { return b; }
+
+ ComputationInfo info() { return Success; }
};
} // end namespace Eigen
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
index 5512219..454f468 100644
--- a/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
+++ b/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -27,7 +27,7 @@ namespace internal {
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
+ const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
@@ -36,9 +36,9 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> VectorType;
RealScalar tol = tol_error;
- int maxIters = iters;
+ Index maxIters = iters;
- int n = mat.cols();
+ Index n = mat.cols();
VectorType r = rhs - mat * x;
VectorType r0 = r;
@@ -59,20 +59,21 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
VectorType s(n), t(n);
- RealScalar tol2 = tol*tol;
+ RealScalar tol2 = tol*tol*rhs_sqnorm;
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
- int i = 0;
- int restarts = 0;
+ Index i = 0;
+ Index restarts = 0;
- while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
+ while ( r.squaredNorm() > tol2 && i<maxIters )
{
Scalar rho_old = rho;
rho = r0.dot(r);
if (abs(rho) < eps2*r0_sqnorm)
{
- // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
+ // The new residual vector became too orthogonal to the arbitrarily chosen direction r0
// Let's restart with a new r0:
+ r = rhs - mat * x;
r0 = r;
rho = r0_sqnorm = r.squaredNorm();
if(restarts++ == 0)
@@ -131,35 +132,33 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
+ * \implsparsesolverconcept
+ *
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
+ * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
+ *
+ * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format.
+ * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
+ * See \ref TopicMultiThreading for details.
+ *
* This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * BiCGSTAB<SparseMatrix<double> > solver;
- * solver.compute(A);
- * x = solver.solve(b);
- * std::cout << "#iterations: " << solver.iterations() << std::endl;
- * std::cout << "estimated error: " << solver.error() << std::endl;
- * // update b, and solve again
- * x = solver.solve(b);
- * \endcode
+ * \include BiCGSTAB_simple.cpp
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
+ * BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
+ *
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<BiCGSTAB> Base;
- using Base::mp_matrix;
+ using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@@ -167,7 +166,6 @@ class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
@@ -190,35 +188,19 @@ public:
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~BiCGSTAB() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
- }
-
+
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
- for(int j=0; j<b.cols(); ++j)
+ for(Index j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
- if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
+ if(!internal::bicgstab(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
failed = true;
}
m_info = failed ? NumericalIssue
@@ -228,36 +210,19 @@ public:
}
/** \internal */
+ using Base::_solve_impl;
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
-// x.setZero();
- x = b;
- _solveWithGuess(b,x);
+ x.resize(this->rows(),b.cols());
+ x.setZero();
+ _solve_with_guess_impl(b,x);
}
protected:
};
-
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_BICGSTAB_H
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/CMakeLists.txt b/eigen/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
deleted file mode 100644
index 59ccc00..0000000
--- a/eigen/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_IterativeLinearSolvers_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_IterativeLinearSolvers_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/IterativeLinearSolvers COMPONENT Devel
- )
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
index 7dd4010..395daa8 100644
--- a/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
+++ b/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -26,7 +26,7 @@ namespace internal {
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
+ const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
@@ -36,9 +36,9 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
typedef Matrix<Scalar,Dynamic,1> VectorType;
RealScalar tol = tol_error;
- int maxIters = iters;
+ Index maxIters = iters;
- int n = mat.cols();
+ Index n = mat.cols();
VectorType residual = rhs - mat * x; //initial residual
@@ -60,29 +60,29 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
}
VectorType p(n);
- p = precond.solve(residual); //initial search direction
+ p = precond.solve(residual); // initial search direction
VectorType z(n), tmp(n);
RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
- int i = 0;
+ Index i = 0;
while(i < maxIters)
{
- tmp.noalias() = mat * p; // the bottleneck of the algorithm
+ tmp.noalias() = mat * p; // the bottleneck of the algorithm
- Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
- x += alpha * p; // update solution
- residual -= alpha * tmp; // update residue
+ Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
+ x += alpha * p; // update solution
+ residual -= alpha * tmp; // update residual
residualNorm2 = residual.squaredNorm();
if(residualNorm2 < threshold)
break;
- z = precond.solve(residual); // approximately solve for "A z = residual"
+ z = precond.solve(residual); // approximately solve for "A z = residual"
RealScalar absOld = absNew;
absNew = numext::real(residual.dot(z)); // update the absolute value of r
- RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
- p = z + beta * p; // update search direction
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
+ p = z + beta * p; // update search direction
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
@@ -107,47 +107,57 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
}
/** \ingroup IterativeLinearSolvers_Module
- * \brief A conjugate gradient solver for sparse self-adjoint problems
+ * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems
*
- * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
- * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
+ * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm.
+ * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
- * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
+ * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered.
+ * Default is \c Lower, best performance is \c Lower|Upper.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
+ * \implsparsesolverconcept
+ *
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
+ * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
+ *
+ * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is
+ * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this
+ * case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
+ * See \ref TopicMultiThreading for details.
+ *
* This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * ConjugateGradient<SparseMatrix<double> > cg;
- * cg.compute(A);
- * x = cg.solve(b);
- * std::cout << "#iterations: " << cg.iterations() << std::endl;
- * std::cout << "estimated error: " << cg.error() << std::endl;
- * // update b, and solve again
- * x = cg.solve(b);
- * \endcode
+ \code
+ int n = 10000;
+ VectorXd x(n), b(n);
+ SparseMatrix<double> A(n,n);
+ // fill A and b
+ ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg;
+ cg.compute(A);
+ x = cg.solve(b);
+ std::cout << "#iterations: " << cg.iterations() << std::endl;
+ std::cout << "estimated error: " << cg.error() << std::endl;
+ // update b, and solve again
+ x = cg.solve(b);
+ \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+ * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
typedef IterativeSolverBase<ConjugateGradient> Base;
- using Base::mp_matrix;
+ using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@@ -155,7 +165,6 @@ class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixTy
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
@@ -182,41 +191,36 @@ public:
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~ConjugateGradient() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
- }
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
+ typedef typename Base::MatrixWrapper MatrixWrapper;
+ typedef typename Base::ActualMatrixType ActualMatrixType;
+ enum {
+ TransposeInput = (!MatrixWrapper::MatrixFree)
+ && (UpLo==(Lower|Upper))
+ && (!MatrixType::IsRowMajor)
+ && (!NumTraits<Scalar>::IsComplex)
+ };
+ typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
typedef typename internal::conditional<UpLo==(Lower|Upper),
- const MatrixType&,
- SparseSelfAdjointView<const MatrixType, UpLo>
- >::type MatrixWrapperType;
+ RowMajorWrapper,
+ typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
+ >::type SelfAdjointWrapper;
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
- for(int j=0; j<b.cols(); ++j)
+ for(Index j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
- internal::conjugate_gradient(MatrixWrapperType(*mp_matrix), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
+ RowMajorWrapper row_mat(matrix());
+ internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
}
m_isInitialized = true;
@@ -224,35 +228,18 @@ public:
}
/** \internal */
+ using Base::_solve_impl;
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
x.setZero();
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b.derived(),x);
}
protected:
};
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
-struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
-{
- typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_CONJUGATE_GRADIENT_H
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
new file mode 100644
index 0000000..e45c272
--- /dev/null
+++ b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
@@ -0,0 +1,400 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+
+#include <vector>
+#include <list>
+
+namespace Eigen {
+/**
+ * \brief Modified Incomplete Cholesky with dual threshold
+ *
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+ *
+ * \tparam Scalar the scalar type of the input matrices
+ * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
+ * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
+ *
+ * \implsparsesolverconcept
+ *
+ * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
+ * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
+ * fill-in reducing permutation as computed by the ordering method.
+ *
+ * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
+ * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
+ * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
+ * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
+ * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
+ * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
+ *
+ */
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
+#ifndef EIGEN_MPL2_ONLY
+AMDOrdering<int>
+#else
+NaturalOrdering<int>
+#endif
+>
+class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
+{
+ protected:
+ typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
+ using Base::m_isInitialized;
+ public:
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef _OrderingType OrderingType;
+ typedef typename OrderingType::PermutationType PermutationType;
+ typedef typename PermutationType::StorageIndex StorageIndex;
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
+ typedef Matrix<Scalar,Dynamic,1> VectorSx;
+ typedef Matrix<RealScalar,Dynamic,1> VectorRx;
+ typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
+ typedef std::vector<std::list<StorageIndex> > VectorList;
+ enum { UpLo = _UpLo };
+ enum {
+ ColsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic
+ };
+ public:
+
+ /** Default constructor leaving the object in a partly non-initialized stage.
+ *
+ * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
+ *
+ * \sa IncompleteCholesky(const MatrixType&)
+ */
+ IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
+
+ /** Constructor computing the incomplete factorization for the given matrix \a matrix.
+ */
+ template<typename MatrixType>
+ IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
+ {
+ compute(matrix);
+ }
+
+ /** \returns number of rows of the factored matrix */
+ Index rows() const { return m_L.rows(); }
+
+ /** \returns number of columns of the factored matrix */
+ Index cols() const { return m_L.cols(); }
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * It triggers an assertion if \c *this has not been initialized through the respective constructor,
+ * or a call to compute() or analyzePattern().
+ *
+ * \returns \c Success if computation was successful,
+ * \c NumericalIssue if the matrix appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Set the initial shift parameter \f$ \sigma \f$.
+ */
+ void setInitialShift(RealScalar shift) { m_initialShift = shift; }
+
+ /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
+ */
+ template<typename MatrixType>
+ void analyzePattern(const MatrixType& mat)
+ {
+ OrderingType ord;
+ PermutationType pinv;
+ ord(mat.template selfadjointView<UpLo>(), pinv);
+ if(pinv.size()>0) m_perm = pinv.inverse();
+ else m_perm.resize(0);
+ m_L.resize(mat.rows(), mat.cols());
+ m_analysisIsOk = true;
+ m_isInitialized = true;
+ m_info = Success;
+ }
+
+ /** \brief Performs the numerical factorization of the input matrix \a mat
+ *
+ * The method analyzePattern() or compute() must have been called beforehand
+ * with a matrix having the same pattern.
+ *
+ * \sa compute(), analyzePattern()
+ */
+ template<typename MatrixType>
+ void factorize(const MatrixType& mat);
+
+ /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
+ *
+ * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
+ *
+ * \sa analyzePattern(), factorize()
+ */
+ template<typename MatrixType>
+ void compute(const MatrixType& mat)
+ {
+ analyzePattern(mat);
+ factorize(mat);
+ }
+
+ // internal
+ template<typename Rhs, typename Dest>
+ void _solve_impl(const Rhs& b, Dest& x) const
+ {
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+ if (m_perm.rows() == b.rows()) x = m_perm * b;
+ else x = b;
+ x = m_scale.asDiagonal() * x;
+ x = m_L.template triangularView<Lower>().solve(x);
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
+ x = m_scale.asDiagonal() * x;
+ if (m_perm.rows() == b.rows())
+ x = m_perm.inverse() * x;
+ }
+
+ /** \returns the sparse lower triangular factor L */
+ const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
+
+ /** \returns a vector representing the scaling factor S */
+ const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
+
+ /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
+ const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
+
+ protected:
+ FactorType m_L; // The lower part stored in CSC
+ VectorRx m_scale; // The vector for scaling the matrix
+ RealScalar m_initialShift; // The initial shift parameter
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ ComputationInfo m_info;
+ PermutationType m_perm;
+
+ private:
+ inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
+};
+
+// Based on the following paper:
+// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+ using std::sqrt;
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+
+ // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+
+ // Apply the fill-reducing permutation computed in analyzePattern()
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
+ {
+ // The temporary is needed to make sure that the diagonal entry is properly sorted
+ FactorType tmp(mat.rows(), mat.cols());
+ tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+ m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
+ }
+ else
+ {
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+ }
+
+ Index n = m_L.cols();
+ Index nnz = m_L.nonZeros();
+ Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
+ Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
+ Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
+ VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+ VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
+ VectorSx col_vals(n); // Store a nonzero values in each column
+ VectorIx col_irow(n); // Row indices of nonzero elements in each column
+ VectorIx col_pattern(n);
+ col_pattern.fill(-1);
+ StorageIndex col_nnz;
+
+
+ // Computes the scaling factors
+ m_scale.resize(n);
+ m_scale.setZero();
+ for (Index j = 0; j < n; j++)
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
+ {
+ m_scale(j) += numext::abs2(vals(k));
+ if(rowIdx[k]!=j)
+ m_scale(rowIdx[k]) += numext::abs2(vals(k));
+ }
+
+ m_scale = m_scale.cwiseSqrt().cwiseSqrt();
+
+ for (Index j = 0; j < n; ++j)
+ if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
+ m_scale(j) = RealScalar(1)/m_scale(j);
+ else
+ m_scale(j) = 1;
+
+ // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
+
+ // Scale and compute the shift for the matrix
+ RealScalar mindiag = NumTraits<RealScalar>::highest();
+ for (Index j = 0; j < n; j++)
+ {
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
+ vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
+ eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
+ mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
+ }
+
+ FactorType L_save = m_L;
+
+ RealScalar shift = 0;
+ if(mindiag <= RealScalar(0.))
+ shift = m_initialShift - mindiag;
+
+ m_info = NumericalIssue;
+
+ // Try to perform the incomplete factorization using the current shift
+ int iter = 0;
+ do
+ {
+ // Apply the shift to the diagonal elements of the matrix
+ for (Index j = 0; j < n; j++)
+ vals[colPtr[j]] += shift;
+
+ // jki version of the Cholesky factorization
+ Index j=0;
+ for (; j < n; ++j)
+ {
+ // Left-looking factorization of the j-th column
+ // First, load the j-th column into col_vals
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
+ col_nnz = 0;
+ for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ StorageIndex l = rowIdx[i];
+ col_vals(col_nnz) = vals[i];
+ col_irow(col_nnz) = l;
+ col_pattern(l) = col_nnz;
+ col_nnz++;
+ }
+ {
+ typename std::list<StorageIndex>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ Index jk = firstElt(*k); // First element to use in the column
+ eigen_internal_assert(rowIdx[jk]==j);
+ Scalar v_j_jk = numext::conj(vals[jk]);
+
+ jk += 1;
+ for (Index i = jk; i < colPtr[*k+1]; i++)
+ {
+ StorageIndex l = rowIdx[i];
+ if(col_pattern[l]<0)
+ {
+ col_vals(col_nnz) = vals[i] * v_j_jk;
+ col_irow[col_nnz] = l;
+ col_pattern(l) = col_nnz;
+ col_nnz++;
+ }
+ else
+ col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
+ }
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+ }
+ }
+
+ // Scale the current column
+ if(numext::real(diag) <= 0)
+ {
+ if(++iter>=10)
+ return;
+
+ // increase shift
+ shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
+ // restore m_L, col_pattern, and listCol
+ vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
+ rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
+ colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
+ col_pattern.fill(-1);
+ for(Index i=0; i<n; ++i)
+ listCol[i].clear();
+
+ break;
+ }
+
+ RealScalar rdiag = sqrt(numext::real(diag));
+ vals[colPtr[j]] = rdiag;
+ for (Index k = 0; k<col_nnz; ++k)
+ {
+ Index i = col_irow[k];
+ //Scale
+ col_vals(k) /= rdiag;
+ //Update the remaining diagonals with col_vals
+ vals[colPtr[i]] -= numext::abs2(col_vals(k));
+ }
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ Index p = colPtr[j+1] - colPtr[j] - 1 ;
+ Ref<VectorSx> cvals = col_vals.head(col_nnz);
+ Ref<VectorIx> cirow = col_irow.head(col_nnz);
+ internal::QuickSplit(cvals,cirow, p);
+ // Insert the largest p elements in the matrix
+ Index cpt = 0;
+ for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = col_vals(cpt);
+ rowIdx[i] = col_irow(cpt);
+ // restore col_pattern:
+ col_pattern(col_irow(cpt)) = -1;
+ cpt++;
+ }
+ // Get the first smallest row index and put it after the diagonal element
+ Index jk = colPtr(j)+1;
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
+ }
+
+ if(j==n)
+ {
+ m_factorizationIsOk = true;
+ m_info = Success;
+ }
+ } while(m_info!=Success);
+}
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
+{
+ if (jk < colPtr(col+1) )
+ {
+ Index p = colPtr(col+1) - jk;
+ Index minpos;
+ rowIdx.segment(jk,p).minCoeff(&minpos);
+ minpos += jk;
+ if (rowIdx(minpos) != rowIdx(jk))
+ {
+ //Swap
+ std::swap(rowIdx(jk),rowIdx(minpos));
+ std::swap(vals(jk),vals(minpos));
+ }
+ firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
+ listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
+ }
+}
+
+} // end namespace Eigen
+
+#endif
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index d3f37fe..338e6f1 100644
--- a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -24,7 +25,7 @@ namespace internal {
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
-template <typename VectorV, typename VectorI, typename Index>
+template <typename VectorV, typename VectorI>
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
{
typedef typename VectorV::RealScalar RealScalar;
@@ -66,6 +67,8 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
* \class IncompleteLUT
* \brief Incomplete LU factorization with dual-threshold strategy
*
+ * \implsparsesolverconcept
+ *
* During the numerical factorization, two dropping rules are used :
* 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
@@ -92,28 +95,36 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
* alternatively, on GMANE:
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
*/
-template <typename _Scalar>
-class IncompleteLUT : internal::noncopyable
+template <typename _Scalar, typename _StorageIndex = int>
+class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> >
{
+ protected:
+ typedef SparseSolverBase<IncompleteLUT> Base;
+ using Base::m_isInitialized;
+ public:
typedef _Scalar Scalar;
+ typedef _StorageIndex StorageIndex;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef SparseMatrix<Scalar,RowMajor> FactorType;
- typedef SparseMatrix<Scalar,ColMajor> PermutType;
- typedef typename FactorType::Index Index;
+ typedef Matrix<StorageIndex,Dynamic,1> VectorI;
+ typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType;
+
+ enum {
+ ColsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic
+ };
public:
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
IncompleteLUT()
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
- m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
+ m_analysisIsOk(false), m_factorizationIsOk(false)
{}
template<typename MatrixType>
- IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
+ explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
: m_droptol(droptol),m_fillfactor(fillfactor),
- m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
+ m_analysisIsOk(false),m_factorizationIsOk(false)
{
eigen_assert(fillfactor != 0);
compute(mat);
@@ -146,7 +157,7 @@ class IncompleteLUT : internal::noncopyable
*
**/
template<typename MatrixType>
- IncompleteLUT<Scalar>& compute(const MatrixType& amat)
+ IncompleteLUT& compute(const MatrixType& amat)
{
analyzePattern(amat);
factorize(amat);
@@ -157,7 +168,7 @@ class IncompleteLUT : internal::noncopyable
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);
@@ -165,15 +176,6 @@ class IncompleteLUT : internal::noncopyable
x = m_P * x;
}
- template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
- }
-
protected:
/** keeps off-diagonal entries; drops diagonal entries */
@@ -191,18 +193,17 @@ protected:
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
- bool m_isInitialized;
ComputationInfo m_info;
- PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
- PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // Fill-reducing permutation
+ PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // Inverse permutation
};
/**
* Set control parameter droptol
* \param droptol Drop any element whose magnitude is less than this tolerance
**/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
+template<typename Scalar, typename StorageIndex>
+void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol)
{
this->m_droptol = droptol;
}
@@ -211,61 +212,62 @@ void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
* Set control parameter fillfactor
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
**/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
+template<typename Scalar, typename StorageIndex>
+void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
{
this->m_fillfactor = fillfactor;
}
-template <typename Scalar>
+template <typename Scalar, typename StorageIndex>
template<typename _MatrixType>
-void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
+void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
{
// Compute the Fill-reducing permutation
// Since ILUT does not perform any numerical pivoting,
// it is highly preferable to keep the diagonal through symmetric permutations.
#ifndef EIGEN_MPL2_ONLY
// To this end, let's symmetrize the pattern and perform AMD on it.
- SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
- SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
+ SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
+ SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
- SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
- AMDOrdering<Index> ordering;
+ SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
+ AMDOrdering<StorageIndex> ordering;
ordering(AtA,m_P);
m_Pinv = m_P.inverse(); // cache the inverse permutation
#else
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
- SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
- COLAMDOrdering<Index> ordering;
+ SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
+ COLAMDOrdering<StorageIndex> ordering;
ordering(mat1,m_Pinv);
m_P = m_Pinv.inverse();
#endif
m_analysisIsOk = true;
m_factorizationIsOk = false;
- m_isInitialized = false;
+ m_isInitialized = true;
}
-template <typename Scalar>
+template <typename Scalar, typename StorageIndex>
template<typename _MatrixType>
-void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
+void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat)
{
using std::sqrt;
using std::swap;
using std::abs;
+ using internal::convert_index;
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
Index n = amat.cols(); // Size of the matrix
m_lu.resize(n,n);
// Declare Working vectors and variables
Vector u(n) ; // real values of the row -- maximum size is n --
- VectorXi ju(n); // column position of the values in u -- maximum size is n
- VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
+ VectorI ju(n); // column position of the values in u -- maximum size is n
+ VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
// Apply the fill-reducing permutation
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- SparseMatrix<Scalar,RowMajor, Index> mat;
+ SparseMatrix<Scalar,RowMajor, StorageIndex> mat;
mat = amat.twistedBy(m_Pinv);
// Initialization
@@ -274,7 +276,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
u.fill(0);
// number of largest elements to keep in each row:
- Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
+ Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1;
if (fill_in > n) fill_in = n;
// number of largest nonzero elements to keep in the L and the U part of the current row:
@@ -289,9 +291,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
Index sizel = 0; // number of nonzero elements in the lower part of the current row
- ju(ii) = ii;
+ ju(ii) = convert_index<StorageIndex>(ii);
u(ii) = 0;
- jr(ii) = ii;
+ jr(ii) = convert_index<StorageIndex>(ii);
RealScalar rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
@@ -301,9 +303,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
if (k < ii)
{
// copy the lower part
- ju(sizel) = k;
+ ju(sizel) = convert_index<StorageIndex>(k);
u(sizel) = j_it.value();
- jr(k) = sizel;
+ jr(k) = convert_index<StorageIndex>(sizel);
++sizel;
}
else if (k == ii)
@@ -314,9 +316,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
{
// copy the upper part
Index jpos = ii + sizeu;
- ju(jpos) = k;
+ ju(jpos) = convert_index<StorageIndex>(k);
u(jpos) = j_it.value();
- jr(k) = jpos;
+ jr(k) = convert_index<StorageIndex>(jpos);
++sizeu;
}
rownorm += numext::abs2(j_it.value());
@@ -346,7 +348,8 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
// swap the two locations
Index j = ju(jj);
swap(ju(jj), ju(k));
- jr(minrow) = jj; jr(j) = k;
+ jr(minrow) = convert_index<StorageIndex>(jj);
+ jr(j) = convert_index<StorageIndex>(k);
swap(u(jj), u(k));
}
// Reset this location
@@ -370,8 +373,8 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
for (; ki_it; ++ki_it)
{
Scalar prod = fact * ki_it.value();
- Index j = ki_it.index();
- Index jpos = jr(j);
+ Index j = ki_it.index();
+ Index jpos = jr(j);
if (jpos == -1) // fill-in element
{
Index newpos;
@@ -387,16 +390,16 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
sizel++;
eigen_internal_assert(sizel<=ii);
}
- ju(newpos) = j;
+ ju(newpos) = convert_index<StorageIndex>(j);
u(newpos) = -prod;
- jr(j) = newpos;
+ jr(j) = convert_index<StorageIndex>(newpos);
}
else
u(jpos) -= prod;
}
// store the pivot element
- u(len) = fact;
- ju(len) = minrow;
+ u(len) = fact;
+ ju(len) = convert_index<StorageIndex>(minrow);
++len;
jj++;
@@ -411,7 +414,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
sizel = len;
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
- typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
+ typename VectorI::SegmentReturnType jul(ju.segment(0, sizel));
internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
@@ -440,39 +443,20 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
sizeu = len + 1; // +1 to take into account the diagonal element
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
- typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
+ typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(Index k = ii + 1; k < ii + len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
-
m_lu.finalize();
m_lu.makeCompressed();
m_factorizationIsOk = true;
- m_isInitialized = m_factorizationIsOk;
m_info = Success;
}
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
-{
- typedef IncompleteLUT<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
index 501ef2f..7c2326e 100644
--- a/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
+++ b/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,29 +12,158 @@
namespace Eigen {
+namespace internal {
+
+template<typename MatrixType>
+struct is_ref_compatible_impl
+{
+private:
+ template <typename T0>
+ struct any_conversion
+ {
+ template <typename T> any_conversion(const volatile T&);
+ template <typename T> any_conversion(T&);
+ };
+ struct yes {int a[1];};
+ struct no {int a[2];};
+
+ template<typename T>
+ static yes test(const Ref<const T>&, int);
+ template<typename T>
+ static no test(any_conversion<T>, ...);
+
+public:
+ static MatrixType ms_from;
+ enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
+};
+
+template<typename MatrixType>
+struct is_ref_compatible
+{
+ enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
+};
+
+template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
+class generic_matrix_wrapper;
+
+// We have an explicit matrix at hand, compatible with Ref<>
+template<typename MatrixType>
+class generic_matrix_wrapper<MatrixType,false>
+{
+public:
+ typedef Ref<const MatrixType> ActualMatrixType;
+ template<int UpLo> struct ConstSelfAdjointViewReturnType {
+ typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
+ };
+
+ enum {
+ MatrixFree = false
+ };
+
+ generic_matrix_wrapper()
+ : m_dummy(0,0), m_matrix(m_dummy)
+ {}
+
+ template<typename InputType>
+ generic_matrix_wrapper(const InputType &mat)
+ : m_matrix(mat)
+ {}
+
+ const ActualMatrixType& matrix() const
+ {
+ return m_matrix;
+ }
+
+ template<typename MatrixDerived>
+ void grab(const EigenBase<MatrixDerived> &mat)
+ {
+ m_matrix.~Ref<const MatrixType>();
+ ::new (&m_matrix) Ref<const MatrixType>(mat.derived());
+ }
+
+ void grab(const Ref<const MatrixType> &mat)
+ {
+ if(&(mat.derived()) != &m_matrix)
+ {
+ m_matrix.~Ref<const MatrixType>();
+ ::new (&m_matrix) Ref<const MatrixType>(mat);
+ }
+ }
+
+protected:
+ MatrixType m_dummy; // used to default initialize the Ref<> object
+ ActualMatrixType m_matrix;
+};
+
+// MatrixType is not compatible with Ref<> -> matrix-free wrapper
+template<typename MatrixType>
+class generic_matrix_wrapper<MatrixType,true>
+{
+public:
+ typedef MatrixType ActualMatrixType;
+ template<int UpLo> struct ConstSelfAdjointViewReturnType
+ {
+ typedef ActualMatrixType Type;
+ };
+
+ enum {
+ MatrixFree = true
+ };
+
+ generic_matrix_wrapper()
+ : mp_matrix(0)
+ {}
+
+ generic_matrix_wrapper(const MatrixType &mat)
+ : mp_matrix(&mat)
+ {}
+
+ const ActualMatrixType& matrix() const
+ {
+ return *mp_matrix;
+ }
+
+ void grab(const MatrixType &mat)
+ {
+ mp_matrix = &mat;
+ }
+
+protected:
+ const ActualMatrixType *mp_matrix;
+};
+
+}
+
/** \ingroup IterativeLinearSolvers_Module
* \brief Base class for linear iterative solvers
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename Derived>
-class IterativeSolverBase : internal::noncopyable
+class IterativeSolverBase : public SparseSolverBase<Derived>
{
+protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::m_isInitialized;
+
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::RealScalar RealScalar;
+ enum {
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
public:
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
+ using Base::derived;
/** Default constructor. */
IterativeSolverBase()
- : mp_matrix(0)
{
init();
}
@@ -49,82 +178,90 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- template<typename InputDerived>
- IterativeSolverBase(const EigenBase<InputDerived>& A)
+ template<typename MatrixDerived>
+ explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
+ : m_matrixWrapper(A.derived())
{
init();
- compute(A.derived());
+ compute(matrix());
}
~IterativeSolverBase() {}
- /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems.
+ /** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
*
- * Currently, this function mostly call analyzePattern on the preconditioner. In the future
- * we might, for instance, implement column reodering for faster matrix vector products.
+ * Currently, this function mostly calls analyzePattern on the preconditioner. In the future
+ * we might, for instance, implement column reordering for faster matrix vector products.
*/
- template<typename InputDerived>
- Derived& analyzePattern(const EigenBase<InputDerived>& A)
+ template<typename MatrixDerived>
+ Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
{
- grabInput(A.derived());
- m_preconditioner.analyzePattern(*mp_matrix);
+ grab(A.derived());
+ m_preconditioner.analyzePattern(matrix());
m_isInitialized = true;
m_analysisIsOk = true;
- m_info = Success;
+ m_info = m_preconditioner.info();
return derived();
}
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
*
- * Currently, this function mostly call factorize on the preconditioner.
+ * Currently, this function mostly calls factorize on the preconditioner.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- template<typename InputDerived>
- Derived& factorize(const EigenBase<InputDerived>& A)
+ template<typename MatrixDerived>
+ Derived& factorize(const EigenBase<MatrixDerived>& A)
{
- grabInput(A.derived());
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- m_preconditioner.factorize(*mp_matrix);
+ grab(A.derived());
+ m_preconditioner.factorize(matrix());
m_factorizationIsOk = true;
- m_info = Success;
+ m_info = m_preconditioner.info();
return derived();
}
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
*
- * Currently, this function mostly initialized/compute the preconditioner. In the future
- * we might, for instance, implement column reodering for faster matrix vector products.
+ * Currently, this function mostly initializes/computes the preconditioner. In the future
+ * we might, for instance, implement column reordering for faster matrix vector products.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
- template<typename InputDerived>
- Derived& compute(const EigenBase<InputDerived>& A)
+ template<typename MatrixDerived>
+ Derived& compute(const EigenBase<MatrixDerived>& A)
{
- grabInput(A.derived());
- m_preconditioner.compute(*mp_matrix);
+ grab(A.derived());
+ m_preconditioner.compute(matrix());
m_isInitialized = true;
m_analysisIsOk = true;
m_factorizationIsOk = true;
- m_info = Success;
+ m_info = m_preconditioner.info();
return derived();
}
/** \internal */
- Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; }
+ Index rows() const { return matrix().rows(); }
+
/** \internal */
- Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; }
+ Index cols() const { return matrix().cols(); }
- /** \returns the tolerance threshold used by the stopping criteria */
+ /** \returns the tolerance threshold used by the stopping criteria.
+ * \sa setTolerance()
+ */
RealScalar tolerance() const { return m_tolerance; }
- /** Sets the tolerance threshold used by the stopping criteria */
+ /** Sets the tolerance threshold used by the stopping criteria.
+ *
+ * This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
+ * The default value is the machine precision given by NumTraits<Scalar>::epsilon()
+ */
Derived& setTolerance(const RealScalar& tolerance)
{
m_tolerance = tolerance;
@@ -137,58 +274,52 @@ public:
/** \returns a read-only reference to the preconditioner. */
const Preconditioner& preconditioner() const { return m_preconditioner; }
- /** \returns the max number of iterations */
- int maxIterations() const
+ /** \returns the max number of iterations.
+ * It is either the value setted by setMaxIterations or, by default,
+ * twice the number of columns of the matrix.
+ */
+ Index maxIterations() const
{
- return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations;
+ return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
}
- /** Sets the max number of iterations */
- Derived& setMaxIterations(int maxIters)
+ /** Sets the max number of iterations.
+ * Default is twice the number of columns of the matrix.
+ */
+ Derived& setMaxIterations(Index maxIters)
{
m_maxIterations = maxIters;
return derived();
}
/** \returns the number of iterations performed during the last solve */
- int iterations() const
+ Index iterations() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_iterations;
}
- /** \returns the tolerance error reached during the last solve */
+ /** \returns the tolerance error reached during the last solve.
+ * It is a close approximation of the true relative residual error |Ax-b|/|b|.
+ */
RealScalar error() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_error;
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * and \a x0 as an initial solution.
*
- * \sa compute()
+ * \sa solve(), compute()
*/
- template<typename Rhs>
- inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
+ template<typename Rhs,typename Guess>
+ inline const SolveWithGuess<Derived, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived());
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
@@ -199,46 +330,30 @@ public:
}
/** \internal */
- template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
+ template<typename Rhs, typename DestDerived>
+ void _solve_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
{
eigen_assert(rows()==b.rows());
- int rhsCols = b.cols();
- int size = b.rows();
+ Index rhsCols = b.cols();
+ Index size = b.rows();
+ DestDerived& dest(aDest.derived());
+ typedef typename DestDerived::Scalar DestScalar;
Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
- Eigen::Matrix<DestScalar,Dynamic,1> tx(size);
- for(int k=0; k<rhsCols; ++k)
+ Eigen::Matrix<DestScalar,Dynamic,1> tx(cols());
+ // We do not directly fill dest because sparse expressions have to be free of aliasing issue.
+ // For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
+ typename DestDerived::PlainObject tmp(cols(),rhsCols);
+ for(Index k=0; k<rhsCols; ++k)
{
tb = b.col(k);
tx = derived().solve(tb);
- dest.col(k) = tx.sparseView(0);
+ tmp.col(k) = tx.sparseView(0);
}
+ dest.swap(tmp);
}
protected:
-
- template<typename InputDerived>
- void grabInput(const EigenBase<InputDerived>& A)
- {
- // we const cast to prevent the creation of a MatrixType temporary by the compiler.
- grabInput_impl(A.const_cast_derived());
- }
-
- template<typename InputDerived>
- void grabInput_impl(const EigenBase<InputDerived>& A)
- {
- m_copyMatrix = A;
- mp_matrix = &m_copyMatrix;
- }
-
- void grabInput_impl(MatrixType& A)
- {
- if(MatrixType::RowsAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==Dynamic)
- m_copyMatrix.resize(0,0);
- mp_matrix = &A;
- }
-
void init()
{
m_isInitialized = false;
@@ -247,36 +362,33 @@ protected:
m_maxIterations = -1;
m_tolerance = NumTraits<Scalar>::epsilon();
}
- MatrixType m_copyMatrix;
- const MatrixType* mp_matrix;
+
+ typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
+ typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
+
+ const ActualMatrixType& matrix() const
+ {
+ return m_matrixWrapper.matrix();
+ }
+
+ template<typename InputType>
+ void grab(const InputType &A)
+ {
+ m_matrixWrapper.grab(A);
+ }
+
+ MatrixWrapper m_matrixWrapper;
Preconditioner m_preconditioner;
- int m_maxIterations;
+ Index m_maxIterations;
RealScalar m_tolerance;
mutable RealScalar m_error;
- mutable int m_iterations;
+ mutable Index m_iterations;
mutable ComputationInfo m_info;
- mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk;
+ mutable bool m_analysisIsOk, m_factorizationIsOk;
};
-namespace internal {
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs>
- : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs>
-{
- typedef IterativeSolverBase<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve_sparse(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h b/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
new file mode 100644
index 0000000..0aea0e0
--- /dev/null
+++ b/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h
@@ -0,0 +1,216 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
+#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal Low-level conjugate gradient algorithm for least-square problems
+ * \param mat The matrix A
+ * \param rhs The right hand side vector b
+ * \param x On input and initial solution, on output the computed solution.
+ * \param precond A preconditioner being able to efficiently solve for an
+ * approximation of A'Ax=b (regardless of b)
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+ */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+EIGEN_DONT_INLINE
+void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
+ const Preconditioner& precond, Index& iters,
+ typename Dest::RealScalar& tol_error)
+{
+ using std::sqrt;
+ using std::abs;
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+
+ RealScalar tol = tol_error;
+ Index maxIters = iters;
+
+ Index m = mat.rows(), n = mat.cols();
+
+ VectorType residual = rhs - mat * x;
+ VectorType normal_residual = mat.adjoint() * residual;
+
+ RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
+ if(rhsNorm2 == 0)
+ {
+ x.setZero();
+ iters = 0;
+ tol_error = 0;
+ return;
+ }
+ RealScalar threshold = tol*tol*rhsNorm2;
+ RealScalar residualNorm2 = normal_residual.squaredNorm();
+ if (residualNorm2 < threshold)
+ {
+ iters = 0;
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
+ return;
+ }
+
+ VectorType p(n);
+ p = precond.solve(normal_residual); // initial search direction
+
+ VectorType z(n), tmp(m);
+ RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
+ Index i = 0;
+ while(i < maxIters)
+ {
+ tmp.noalias() = mat * p;
+
+ Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
+ x += alpha * p; // update solution
+ residual -= alpha * tmp; // update residual
+ normal_residual = mat.adjoint() * residual; // update residual of the normal equation
+
+ residualNorm2 = normal_residual.squaredNorm();
+ if(residualNorm2 < threshold)
+ break;
+
+ z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
+
+ RealScalar absOld = absNew;
+ absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
+ p = z + beta * p; // update search direction
+ i++;
+ }
+ tol_error = sqrt(residualNorm2 / rhsNorm2);
+ iters = i;
+}
+
+}
+
+template< typename _MatrixType,
+ typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
+class LeastSquaresConjugateGradient;
+
+namespace internal {
+
+template< typename _MatrixType, typename _Preconditioner>
+struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
+{
+ typedef _MatrixType MatrixType;
+ typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \brief A conjugate gradient solver for sparse (or dense) least-square problems
+ *
+ * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
+ * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
+ * Otherwise, the SparseLU or SparseQR classes might be preferable.
+ * The matrix A and the vectors x and b can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
+ * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
+ *
+ * \implsparsesolverconcept
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
+ *
+ * This class can be used as the direct solver classes. Here is a typical usage example:
+ \code
+ int m=1000000, n = 10000;
+ VectorXd x(n), b(m);
+ SparseMatrix<double> A(m,n);
+ // fill A and b
+ LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
+ lscg.compute(A);
+ x = lscg.solve(b);
+ std::cout << "#iterations: " << lscg.iterations() << std::endl;
+ std::cout << "estimated error: " << lscg.error() << std::endl;
+ // update b, and solve again
+ x = lscg.solve(b);
+ \endcode
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method.
+ *
+ * \sa class ConjugateGradient, SparseLU, SparseQR
+ */
+template< typename _MatrixType, typename _Preconditioner>
+class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
+{
+ typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
+ using Base::matrix;
+ using Base::m_error;
+ using Base::m_iterations;
+ using Base::m_info;
+ using Base::m_isInitialized;
+public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+
+public:
+
+ /** Default constructor. */
+ LeastSquaresConjugateGradient() : Base() {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * This constructor is a shortcut for the default constructor followed
+ * by a call to compute().
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ template<typename MatrixDerived>
+ explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
+
+ ~LeastSquaresConjugateGradient() {}
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ for(Index j=0; j<b.cols(); ++j)
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ typename Dest::ColXpr xj(x,j);
+ internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
+ }
+
+ m_isInitialized = true;
+ m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
+ }
+
+ /** \internal */
+ using Base::_solve_impl;
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
+ {
+ x.setZero();
+ _solve_with_guess_impl(b.derived(),x);
+ }
+
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h b/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
new file mode 100644
index 0000000..0ace451
--- /dev/null
+++ b/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
@@ -0,0 +1,115 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SOLVEWITHGUESS_H
+#define EIGEN_SOLVEWITHGUESS_H
+
+namespace Eigen {
+
+template<typename Decomposition, typename RhsType, typename GuessType> class SolveWithGuess;
+
+/** \class SolveWithGuess
+ * \ingroup IterativeLinearSolvers_Module
+ *
+ * \brief Pseudo expression representing a solving operation
+ *
+ * \tparam Decomposition the type of the matrix or decomposion object
+ * \tparam Rhstype the type of the right-hand side
+ *
+ * This class represents an expression of A.solve(B)
+ * and most of the time this is the only way it is used.
+ *
+ */
+namespace internal {
+
+
+template<typename Decomposition, typename RhsType, typename GuessType>
+struct traits<SolveWithGuess<Decomposition, RhsType, GuessType> >
+ : traits<Solve<Decomposition,RhsType> >
+{};
+
+}
+
+
+template<typename Decomposition, typename RhsType, typename GuessType>
+class SolveWithGuess : public internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type
+{
+public:
+ typedef typename internal::traits<SolveWithGuess>::Scalar Scalar;
+ typedef typename internal::traits<SolveWithGuess>::PlainObject PlainObject;
+ typedef typename internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type Base;
+ typedef typename internal::ref_selector<SolveWithGuess>::type Nested;
+
+ SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess)
+ : m_dec(dec), m_rhs(rhs), m_guess(guess)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); }
+
+ EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
+ EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
+ EIGEN_DEVICE_FUNC const GuessType& guess() const { return m_guess; }
+
+protected:
+ const Decomposition &m_dec;
+ const RhsType &m_rhs;
+ const GuessType &m_guess;
+
+private:
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+namespace internal {
+
+// Evaluator of SolveWithGuess -> eval into a temporary
+template<typename Decomposition, typename RhsType, typename GuessType>
+struct evaluator<SolveWithGuess<Decomposition,RhsType, GuessType> >
+ : public evaluator<typename SolveWithGuess<Decomposition,RhsType,GuessType>::PlainObject>
+{
+ typedef SolveWithGuess<Decomposition,RhsType,GuessType> SolveType;
+ typedef typename SolveType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ evaluator(const SolveType& solve)
+ : m_result(solve.rows(), solve.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ m_result = solve.guess();
+ solve.dec()._solve_with_guess_impl(solve.rhs(), m_result);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+// Specialization for "dst = dec.solveWithGuess(rhs)"
+// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere
+template<typename DstXprType, typename DecType, typename RhsType, typename GuessType, typename Scalar>
+struct Assignment<DstXprType, SolveWithGuess<DecType,RhsType,GuessType>, internal::assign_op<Scalar,Scalar>, Dense2Dense>
+{
+ typedef SolveWithGuess<DecType,RhsType,GuessType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ dst = src.guess();
+ src.dec()._solve_with_guess_impl(src.rhs(), dst/*, src.guess()*/);
+ }
+};
+
+} // end namepsace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SOLVEWITHGUESS_H