diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/blas/f2c/zhpmv.c | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/blas/f2c/zhpmv.c')
-rw-r--r-- | eigen/blas/f2c/zhpmv.c | 438 |
1 files changed, 438 insertions, 0 deletions
diff --git a/eigen/blas/f2c/zhpmv.c b/eigen/blas/f2c/zhpmv.c new file mode 100644 index 0000000..fbe2f42 --- /dev/null +++ b/eigen/blas/f2c/zhpmv.c @@ -0,0 +1,438 @@ +/* zhpmv.f -- translated by f2c (version 20100827). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "datatypes.h" + +/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha, + doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex * + beta, doublecomplex *y, integer *incy, ftnlen uplo_len) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4, i__5; + doublereal d__1; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; + doublecomplex temp1, temp2; + extern logical lsame_(char *, char *, ftnlen, ftnlen); + extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHPMV performs the matrix-vector operation */ + +/* y := alpha*A*x + beta*y, */ + +/* where alpha and beta are scalars, x and y are n element vectors and */ +/* A is an n by n hermitian matrix, supplied in packed form. */ + +/* Arguments */ +/* ========== */ + +/* UPLO - CHARACTER*1. */ +/* On entry, UPLO specifies whether the upper or lower */ +/* triangular part of the matrix A is supplied in the packed */ +/* array AP as follows: */ + +/* UPLO = 'U' or 'u' The upper triangular part of A is */ +/* supplied in AP. */ + +/* UPLO = 'L' or 'l' The lower triangular part of A is */ +/* supplied in AP. */ + +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the order of the matrix A. */ +/* N must be at least zero. */ +/* Unchanged on exit. */ + +/* ALPHA - COMPLEX*16 . */ +/* On entry, ALPHA specifies the scalar alpha. */ +/* Unchanged on exit. */ + +/* AP - COMPLEX*16 array of DIMENSION at least */ +/* ( ( n*( n + 1 ) )/2 ). */ +/* Before entry with UPLO = 'U' or 'u', the array AP must */ +/* contain the upper triangular part of the hermitian matrix */ +/* packed sequentially, column by column, so that AP( 1 ) */ +/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ +/* and a( 2, 2 ) respectively, and so on. */ +/* Before entry with UPLO = 'L' or 'l', the array AP must */ +/* contain the lower triangular part of the hermitian matrix */ +/* packed sequentially, column by column, so that AP( 1 ) */ +/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ +/* and a( 3, 1 ) respectively, and so on. */ +/* Note that the imaginary parts of the diagonal elements need */ +/* not be set and are assumed to be zero. */ +/* Unchanged on exit. */ + +/* X - COMPLEX*16 array of dimension at least */ +/* ( 1 + ( n - 1 )*abs( INCX ) ). */ +/* Before entry, the incremented array X must contain the n */ +/* element vector x. */ +/* Unchanged on exit. */ + +/* INCX - INTEGER. */ +/* On entry, INCX specifies the increment for the elements of */ +/* X. INCX must not be zero. */ +/* Unchanged on exit. */ + +/* BETA - COMPLEX*16 . */ +/* On entry, BETA specifies the scalar beta. When BETA is */ +/* supplied as zero then Y need not be set on input. */ +/* Unchanged on exit. */ + +/* Y - COMPLEX*16 array of dimension at least */ +/* ( 1 + ( n - 1 )*abs( INCY ) ). */ +/* Before entry, the incremented array Y must contain the n */ +/* element vector y. On exit, Y is overwritten by the updated */ +/* vector y. */ + +/* INCY - INTEGER. */ +/* On entry, INCY specifies the increment for the elements of */ +/* Y. INCY must not be zero. */ +/* Unchanged on exit. */ + +/* Further Details */ +/* =============== */ + +/* Level 2 Blas routine. */ + +/* -- Written on 22-October-1986. */ +/* Jack Dongarra, Argonne National Lab. */ +/* Jeremy Du Croz, Nag Central Office. */ +/* Sven Hammarling, Nag Central Office. */ +/* Richard Hanson, Sandia National Labs. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --y; + --x; + --ap; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( + ftnlen)1, (ftnlen)1)) { + info = 1; + } else if (*n < 0) { + info = 2; + } else if (*incx == 0) { + info = 6; + } else if (*incy == 0) { + info = 9; + } + if (info != 0) { + xerbla_("ZHPMV ", &info, (ftnlen)6); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && + beta->i == 0.))) { + return 0; + } + +/* Set up the start points in X and Y. */ + + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (*n - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (*n - 1) * *incy; + } + +/* Start the operations. In this version the elements of the array AP */ +/* are accessed sequentially with one pass through AP. */ + +/* First form y := beta*y. */ + + if (beta->r != 1. || beta->i != 0.) { + if (*incy == 1) { + if (beta->r == 0. && beta->i == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0., y[i__2].i = 0.; +/* L10: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0. && beta->i == 0.) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0., y[i__2].i = 0.; + iy += *incy; +/* L30: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0. && alpha->i == 0.) { + return 0; + } + kk = 1; + if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { + +/* Form y when AP contains the upper triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + k = kk; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = k; + z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, + z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &ap[k]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; + ++k; +/* L50: */ + } + i__2 = j; + i__3 = j; + i__4 = kk + j - 1; + d__1 = ap[i__4].r; + z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; + z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; + z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + kk += j; +/* L60: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + ix = kx; + iy = ky; + i__2 = kk + j - 2; + for (k = kk; k <= i__2; ++k) { + i__3 = iy; + i__4 = iy; + i__5 = k; + z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, + z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &ap[k]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; + ix += *incx; + iy += *incy; +/* L70: */ + } + i__2 = jy; + i__3 = jy; + i__4 = kk + j - 1; + d__1 = ap[i__4].r; + z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; + z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; + z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jx += *incx; + jy += *incy; + kk += j; +/* L80: */ + } + } + } else { + +/* Form y when AP contains the lower triangle. */ + + if (*incx == 1 && *incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + i__2 = j; + i__3 = j; + i__4 = kk; + d__1 = ap[i__4].r; + z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + k = kk + 1; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = k; + z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, + z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &ap[k]); + i__3 = i__; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; + ++k; +/* L90: */ + } + i__2 = j; + i__3 = j; + z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + kk += *n - j + 1; +/* L100: */ + } + } else { + jx = kx; + jy = ky; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = + alpha->r * x[i__2].i + alpha->i * x[i__2].r; + temp1.r = z__1.r, temp1.i = z__1.i; + temp2.r = 0., temp2.i = 0.; + i__2 = jy; + i__3 = jy; + i__4 = kk; + d__1 = ap[i__4].r; + z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + ix = jx; + iy = jy; + i__2 = kk + *n - j; + for (k = kk + 1; k <= i__2; ++k) { + ix += *incx; + iy += *incy; + i__3 = iy; + i__4 = iy; + i__5 = k; + z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, + z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] + .r; + z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; + y[i__3].r = z__1.r, y[i__3].i = z__1.i; + d_cnjg(&z__3, &ap[k]); + i__3 = ix; + z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = + z__3.r * x[i__3].i + z__3.i * x[i__3].r; + z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; + temp2.r = z__1.r, temp2.i = z__1.i; +/* L110: */ + } + i__2 = jy; + i__3 = jy; + z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = + alpha->r * temp2.i + alpha->i * temp2.r; + z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; + y[i__2].r = z__1.r, y[i__2].i = z__1.i; + jx += *incx; + jy += *incy; + kk += *n - j + 1; +/* L120: */ + } + } + } + + return 0; + +/* End of ZHPMV . */ + +} /* zhpmv_ */ + |