diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/doc/AsciiQuickReference.txt | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/doc/AsciiQuickReference.txt')
-rw-r--r-- | eigen/doc/AsciiQuickReference.txt | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/eigen/doc/AsciiQuickReference.txt b/eigen/doc/AsciiQuickReference.txt new file mode 100644 index 0000000..b9f497f --- /dev/null +++ b/eigen/doc/AsciiQuickReference.txt @@ -0,0 +1,207 @@ +// A simple quickref for Eigen. Add anything that's missing. +// Main author: Keir Mierle + +#include <Eigen/Dense> + +Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. +Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols. +Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd. +Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major. +Matrix3f P, Q, R; // 3x3 float matrix. +Vector3f x, y, z; // 3x1 float matrix. +RowVector3f a, b, c; // 1x3 float matrix. +VectorXd v; // Dynamic column vector of doubles +double s; + +// Basic usage +// Eigen // Matlab // comments +x.size() // length(x) // vector size +C.rows() // size(C,1) // number of rows +C.cols() // size(C,2) // number of columns +x(i) // x(i+1) // Matlab is 1-based +C(i,j) // C(i+1,j+1) // + +A.resize(4, 4); // Runtime error if assertions are on. +B.resize(4, 9); // Runtime error if assertions are on. +A.resize(3, 3); // Ok; size didn't change. +B.resize(3, 9); // Ok; only dynamic cols changed. + +A << 1, 2, 3, // Initialize A. The elements can also be + 4, 5, 6, // matrices, which are stacked along cols + 7, 8, 9; // and then the rows are stacked. +B << A, A, A; // B is three horizontally stacked A's. +A.fill(10); // Fill A with all 10's. + +// Eigen // Matlab +MatrixXd::Identity(rows,cols) // eye(rows,cols) +C.setIdentity(rows,cols) // C = eye(rows,cols) +MatrixXd::Zero(rows,cols) // zeros(rows,cols) +C.setZero(rows,cols) // C = ones(rows,cols) +MatrixXd::Ones(rows,cols) // ones(rows,cols) +C.setOnes(rows,cols) // C = ones(rows,cols) +MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1). +C.setRandom(rows,cols) // C = rand(rows,cols)*2-1 +VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)' +v.setLinSpaced(size,low,high) // v = linspace(low,high,size)' + + +// Matrix slicing and blocks. All expressions listed here are read/write. +// Templated size versions are faster. Note that Matlab is 1-based (a size N +// vector is x(1)...x(N)). +// Eigen // Matlab +x.head(n) // x(1:n) +x.head<n>() // x(1:n) +x.tail(n) // x(end - n + 1: end) +x.tail<n>() // x(end - n + 1: end) +x.segment(i, n) // x(i+1 : i+n) +x.segment<n>(i) // x(i+1 : i+n) +P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols) +P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols) +P.row(i) // P(i+1, :) +P.col(j) // P(:, j+1) +P.leftCols<cols>() // P(:, 1:cols) +P.leftCols(cols) // P(:, 1:cols) +P.middleCols<cols>(j) // P(:, j+1:j+cols) +P.middleCols(j, cols) // P(:, j+1:j+cols) +P.rightCols<cols>() // P(:, end-cols+1:end) +P.rightCols(cols) // P(:, end-cols+1:end) +P.topRows<rows>() // P(1:rows, :) +P.topRows(rows) // P(1:rows, :) +P.middleRows<rows>(i) // P(i+1:i+rows, :) +P.middleRows(i, rows) // P(i+1:i+rows, :) +P.bottomRows<rows>() // P(end-rows+1:end, :) +P.bottomRows(rows) // P(end-rows+1:end, :) +P.topLeftCorner(rows, cols) // P(1:rows, 1:cols) +P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end) +P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols) +P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end) +P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols) +P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end) +P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols) +P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) + +// Of particular note is Eigen's swap function which is highly optimized. +// Eigen // Matlab +R.row(i) = P.col(j); // R(i, :) = P(:, i) +R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) + +// Views, transpose, etc; all read-write except for .adjoint(). +// Eigen // Matlab +R.adjoint() // R' +R.transpose() // R.' or conj(R') +R.diagonal() // diag(R) +x.asDiagonal() // diag(x) +R.transpose().colwise().reverse(); // rot90(R) +R.conjugate() // conj(R) + +// All the same as Matlab, but matlab doesn't have *= style operators. +// Matrix-vector. Matrix-matrix. Matrix-scalar. +y = M*x; R = P*Q; R = P*s; +a = b*M; R = P - Q; R = s*P; +a *= M; R = P + Q; R = P/s; + R *= Q; R = s*P; + R += Q; R *= s; + R -= Q; R /= s; + +// Vectorized operations on each element independently +// Eigen // Matlab +R = P.cwiseProduct(Q); // R = P .* Q +R = P.array() * s.array();// R = P .* s +R = P.cwiseQuotient(Q); // R = P ./ Q +R = P.array() / Q.array();// R = P ./ Q +R = P.array() + s.array();// R = P + s +R = P.array() - s.array();// R = P - s +R.array() += s; // R = R + s +R.array() -= s; // R = R - s +R.array() < Q.array(); // R < Q +R.array() <= Q.array(); // R <= Q +R.cwiseInverse(); // 1 ./ P +R.array().inverse(); // 1 ./ P +R.array().sin() // sin(P) +R.array().cos() // cos(P) +R.array().pow(s) // P .^ s +R.array().square() // P .^ 2 +R.array().cube() // P .^ 3 +R.cwiseSqrt() // sqrt(P) +R.array().sqrt() // sqrt(P) +R.array().exp() // exp(P) +R.array().log() // log(P) +R.cwiseMax(P) // max(R, P) +R.array().max(P.array()) // max(R, P) +R.cwiseMin(P) // min(R, P) +R.array().min(P.array()) // min(R, P) +R.cwiseAbs() // abs(P) +R.array().abs() // abs(P) +R.cwiseAbs2() // abs(P.^2) +R.array().abs2() // abs(P.^2) +(R.array() < s).select(P,Q); // (R < s ? P : Q) + +// Reductions. +int r, c; +// Eigen // Matlab +R.minCoeff() // min(R(:)) +R.maxCoeff() // max(R(:)) +s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); +s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); +R.sum() // sum(R(:)) +R.colwise().sum() // sum(R) +R.rowwise().sum() // sum(R, 2) or sum(R')' +R.prod() // prod(R(:)) +R.colwise().prod() // prod(R) +R.rowwise().prod() // prod(R, 2) or prod(R')' +R.trace() // trace(R) +R.all() // all(R(:)) +R.colwise().all() // all(R) +R.rowwise().all() // all(R, 2) +R.any() // any(R(:)) +R.colwise().any() // any(R) +R.rowwise().any() // any(R, 2) + +// Dot products, norms, etc. +// Eigen // Matlab +x.norm() // norm(x). Note that norm(R) doesn't work in Eigen. +x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex +x.dot(y) // dot(x, y) +x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> + +//// Type conversion +// Eigen // Matlab +A.cast<double>(); // double(A) +A.cast<float>(); // single(A) +A.cast<int>(); // int32(A) +A.real(); // real(A) +A.imag(); // imag(A) +// if the original type equals destination type, no work is done + +// Note that for most operations Eigen requires all operands to have the same type: +MatrixXf F = MatrixXf::Zero(3,3); +A += F; // illegal in Eigen. In Matlab A = A+F is allowed +A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) + +// Eigen can map existing memory into Eigen matrices. +float array[3]; +Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10 +int data[4] = {1, 2, 3, 4}; +Matrix2i mat2x2(data); // copies data into mat2x2 +Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2 +MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) + +// Solve Ax = b. Result stored in x. Matlab: x = A \ b. +x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky> +x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky> +x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU> +x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR> +x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD> +// .ldlt() -> .matrixL() and .matrixD() +// .llt() -> .matrixL() +// .lu() -> .matrixL() and .matrixU() +// .qr() -> .matrixQ() and .matrixR() +// .svd() -> .matrixU(), .singularValues(), and .matrixV() + +// Eigenvalue problems +// Eigen // Matlab +A.eigenvalues(); // eig(A); +EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A) +eig.eigenvalues(); // diag(val) +eig.eigenvectors(); // vec +// For self-adjoint matrices use SelfAdjointEigenSolver<> |