summaryrefslogtreecommitdiffhomepage
path: root/eigen/doc/special_examples/Tutorial_sparse_example.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2016-09-18 12:42:15 +0200
committerStanislaw Halik <sthalik@misaki.pl>2016-11-02 15:12:04 +0100
commit44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch)
tree6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/doc/special_examples/Tutorial_sparse_example.cpp
parentf3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff)
update
Diffstat (limited to 'eigen/doc/special_examples/Tutorial_sparse_example.cpp')
-rw-r--r--eigen/doc/special_examples/Tutorial_sparse_example.cpp32
1 files changed, 32 insertions, 0 deletions
diff --git a/eigen/doc/special_examples/Tutorial_sparse_example.cpp b/eigen/doc/special_examples/Tutorial_sparse_example.cpp
new file mode 100644
index 0000000..002f19f
--- /dev/null
+++ b/eigen/doc/special_examples/Tutorial_sparse_example.cpp
@@ -0,0 +1,32 @@
+#include <Eigen/Sparse>
+#include <vector>
+
+typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
+typedef Eigen::Triplet<double> T;
+
+void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n);
+void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename);
+
+int main(int argc, char** argv)
+{
+ int n = 300; // size of the image
+ int m = n*n; // number of unknows (=number of pixels)
+
+ // Assembly:
+ std::vector<T> coefficients; // list of non-zeros coefficients
+ Eigen::VectorXd b(m); // the right hand side-vector resulting from the constraints
+ buildProblem(coefficients, b, n);
+
+ SpMat A(m,m);
+ A.setFromTriplets(coefficients.begin(), coefficients.end());
+
+ // Solving:
+ Eigen::SimplicialCholesky<SpMat> chol(A); // performs a Cholesky factorization of A
+ Eigen::VectorXd x = chol.solve(b); // use the factorization to solve for the given right hand side
+
+ // Export the result to a file:
+ saveAsBitmap(x, n, argv[1]);
+
+ return 0;
+}
+