diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/lapack | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/lapack')
-rw-r--r-- | eigen/lapack/complex_double.cpp | 3 | ||||
-rw-r--r-- | eigen/lapack/complex_single.cpp | 3 | ||||
-rw-r--r-- | eigen/lapack/double.cpp | 3 | ||||
-rw-r--r-- | eigen/lapack/eigenvalues.cpp | 27 | ||||
-rw-r--r-- | eigen/lapack/lapack_common.h | 8 | ||||
-rw-r--r-- | eigen/lapack/single.cpp | 3 | ||||
-rw-r--r-- | eigen/lapack/svd.cpp | 138 |
7 files changed, 158 insertions, 27 deletions
diff --git a/eigen/lapack/complex_double.cpp b/eigen/lapack/complex_double.cpp index 424d2b8..c9c5752 100644 --- a/eigen/lapack/complex_double.cpp +++ b/eigen/lapack/complex_double.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -15,3 +15,4 @@ #include "cholesky.cpp" #include "lu.cpp" +#include "svd.cpp" diff --git a/eigen/lapack/complex_single.cpp b/eigen/lapack/complex_single.cpp index c0b2d29..6d11b26 100644 --- a/eigen/lapack/complex_single.cpp +++ b/eigen/lapack/complex_single.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -15,3 +15,4 @@ #include "cholesky.cpp" #include "lu.cpp" +#include "svd.cpp" diff --git a/eigen/lapack/double.cpp b/eigen/lapack/double.cpp index d86549e..ea78bb6 100644 --- a/eigen/lapack/double.cpp +++ b/eigen/lapack/double.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -15,3 +15,4 @@ #include "cholesky.cpp" #include "lu.cpp" #include "eigenvalues.cpp" +#include "svd.cpp" diff --git a/eigen/lapack/eigenvalues.cpp b/eigen/lapack/eigenvalues.cpp index a1526eb..921c515 100644 --- a/eigen/lapack/eigenvalues.cpp +++ b/eigen/lapack/eigenvalues.cpp @@ -7,10 +7,10 @@ // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -#include "common.h" +#include "lapack_common.h" #include <Eigen/Eigenvalues> -// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges +// computes eigen values and vectors of a general N-by-N matrix A EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Scalar* w, Scalar* /*work*/, int* lwork, int *info)) { // TODO exploit the work buffer @@ -22,24 +22,7 @@ EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Sca else if(*n<0) *info = -3; else if(*lda<std::max(1,*n)) *info = -5; else if((!query_size) && *lwork<std::max(1,3**n-1)) *info = -8; - -// if(*info==0) -// { -// int nb = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) -// LWKOPT = MAX( 1, ( NB+2 )*N ) -// WORK( 1 ) = LWKOPT -// * -// IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY ) -// $ INFO = -8 -// END IF -// * -// IF( INFO.NE.0 ) THEN -// CALL XERBLA( 'SSYEV ', -INFO ) -// RETURN -// ELSE IF( LQUERY ) THEN -// RETURN -// END IF - + if(*info!=0) { int e = -*info; @@ -64,14 +47,14 @@ EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Sca if(eig.info()==NoConvergence) { - vector(w,*n).setZero(); + make_vector(w,*n).setZero(); if(computeVectors) matrix(a,*n,*n,*lda).setIdentity(); //*info = 1; return 0; } - vector(w,*n) = eig.eigenvalues(); + make_vector(w,*n) = eig.eigenvalues(); if(computeVectors) matrix(a,*n,*n,*lda) = eig.eigenvectors(); diff --git a/eigen/lapack/lapack_common.h b/eigen/lapack/lapack_common.h index e558c14..c872a81 100644 --- a/eigen/lapack/lapack_common.h +++ b/eigen/lapack/lapack_common.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2010-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -11,6 +11,7 @@ #define EIGEN_LAPACK_COMMON_H #include "../blas/common.h" +#include "../Eigen/src/misc/lapack.h" #define EIGEN_LAPACK_FUNC(FUNC,ARGLIST) \ extern "C" { int EIGEN_BLAS_FUNC(FUNC) ARGLIST; } \ @@ -18,6 +19,11 @@ typedef Eigen::Map<Eigen::Transpositions<Eigen::Dynamic,Eigen::Dynamic,int> > PivotsType; +#if ISCOMPLEX +#define EIGEN_LAPACK_ARG_IF_COMPLEX(X) X, +#else +#define EIGEN_LAPACK_ARG_IF_COMPLEX(X) +#endif #endif // EIGEN_LAPACK_COMMON_H diff --git a/eigen/lapack/single.cpp b/eigen/lapack/single.cpp index a64ed44..c7da3ef 100644 --- a/eigen/lapack/single.cpp +++ b/eigen/lapack/single.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -15,3 +15,4 @@ #include "cholesky.cpp" #include "lu.cpp" #include "eigenvalues.cpp" +#include "svd.cpp" diff --git a/eigen/lapack/svd.cpp b/eigen/lapack/svd.cpp new file mode 100644 index 0000000..77b302b --- /dev/null +++ b/eigen/lapack/svd.cpp @@ -0,0 +1,138 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "lapack_common.h" +#include <Eigen/SVD> + +// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer +EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, + EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info)) +{ + // TODO exploit the work buffer + bool query_size = *lwork==-1; + int diag_size = (std::min)(*m,*n); + + *info = 0; + if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1; + else if(*m<0) *info = -2; + else if(*n<0) *info = -3; + else if(*lda<std::max(1,*m)) *info = -5; + else if(*lda<std::max(1,*m)) *info = -8; + else if(*ldu <1 || (*jobz=='A' && *ldu <*m) + || (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8; + else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n) + || (*jobz=='S' && *ldvt<diag_size) + || (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10; + + if(*info!=0) + { + int e = -*info; + return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6); + } + + if(query_size) + { + *lwork = 0; + return 0; + } + + if(*n==0 || *m==0) + return 0; + + PlainMatrixType mat(*m,*n); + mat = matrix(a,*m,*n,*lda); + + int option = *jobz=='A' ? ComputeFullU|ComputeFullV + : *jobz=='S' ? ComputeThinU|ComputeThinV + : *jobz=='O' ? ComputeThinU|ComputeThinV + : 0; + + BDCSVD<PlainMatrixType> svd(mat,option); + + make_vector(s,diag_size) = svd.singularValues().head(diag_size); + + if(*jobz=='A') + { + matrix(u,*m,*m,*ldu) = svd.matrixU(); + matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); + } + else if(*jobz=='S') + { + matrix(u,*m,diag_size,*ldu) = svd.matrixU(); + matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); + } + else if(*jobz=='O' && *m>=*n) + { + matrix(a,*m,*n,*lda) = svd.matrixU(); + matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); + } + else if(*jobz=='O') + { + matrix(u,*m,*m,*ldu) = svd.matrixU(); + matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); + } + + return 0; +} + +// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm +EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, + EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info)) +{ + // TODO exploit the work buffer + bool query_size = *lwork==-1; + int diag_size = (std::min)(*m,*n); + + *info = 0; + if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1; + else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N') + || (*jobu=='O' && *jobv=='O')) *info = -2; + else if(*m<0) *info = -3; + else if(*n<0) *info = -4; + else if(*lda<std::max(1,*m)) *info = -6; + else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9; + else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n) + || (*jobv=='S' && *ldvt<diag_size)) *info = -11; + + if(*info!=0) + { + int e = -*info; + return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6); + } + + if(query_size) + { + *lwork = 0; + return 0; + } + + if(*n==0 || *m==0) + return 0; + + PlainMatrixType mat(*m,*n); + mat = matrix(a,*m,*n,*lda); + + int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0) + | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0); + + JacobiSVD<PlainMatrixType> svd(mat,option); + + make_vector(s,diag_size) = svd.singularValues().head(diag_size); + { + if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU(); + else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU(); + else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU(); + } + { + if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); + else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); + else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); + } + return 0; +} |