diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/test/array.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/test/array.cpp')
-rw-r--r-- | eigen/test/array.cpp | 258 |
1 files changed, 224 insertions, 34 deletions
diff --git a/eigen/test/array.cpp b/eigen/test/array.cpp index 68f6b3d..f7f3ba7 100644 --- a/eigen/test/array.cpp +++ b/eigen/test/array.cpp @@ -13,15 +13,18 @@ template<typename ArrayType> void array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; + typedef typename ArrayType::RealScalar RealScalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); - Index cols = m.cols(); + Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); + ArrayType m4 = m1; // copy constructor + VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); @@ -41,25 +44,25 @@ template<typename ArrayType> void array(const ArrayType& m) VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; - VERIFY_IS_APPROX(m3, m1 - s1); - + VERIFY_IS_APPROX(m3, m1 - s1); + // scalar operators via Maps m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); - + m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); - + m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); - + m3 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); - ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); + ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2); // reductions @@ -70,7 +73,7 @@ template<typename ArrayType> void array(const ArrayType& m) VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); - VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>())); + VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>())); // vector-wise ops m3 = m1; @@ -81,6 +84,47 @@ template<typename ArrayType> void array(const ArrayType& m) VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); + + // Conversion from scalar + VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); + VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); + VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); + typedef Array<Scalar, + ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime, + ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime, + ArrayType::Options> FixedArrayType; + FixedArrayType f1(s1); + VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); + FixedArrayType f2(numext::real(s1)); + VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); + FixedArrayType f3((int)100*numext::real(s1)); + VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); + f1.setRandom(); + FixedArrayType f4(f1.data()); + VERIFY_IS_APPROX(f4, f1); + + // pow + VERIFY_IS_APPROX(m1.pow(2), m1.square()); + VERIFY_IS_APPROX(pow(m1,2), m1.square()); + VERIFY_IS_APPROX(m1.pow(3), m1.cube()); + VERIFY_IS_APPROX(pow(m1,3), m1.cube()); + VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); + VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); + ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); + VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); + VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); + VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); + VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); + VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); + VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); + VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); + + // Check possible conflicts with 1D ctor + typedef Array<Scalar, Dynamic, 1> OneDArrayType; + OneDArrayType o1(rows); + VERIFY(o1.size()==rows); + OneDArrayType o4((int)rows); + VERIFY(o4.size()==rows); } template<typename ArrayType> void comparisons(const ArrayType& m) @@ -97,8 +141,11 @@ template<typename ArrayType> void comparisons(const ArrayType& m) c = internal::random<Index>(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), - m2 = ArrayType::Random(rows, cols), - m3(rows, cols); + m2 = ArrayType::Random(rows, cols), + m3(rows, cols), + m4 = m1; + + m4 = (m4.abs()==Scalar(0)).select(1,m4); VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); @@ -112,11 +159,17 @@ template<typename ArrayType> void comparisons(const ArrayType& m) VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); - // comparisons to scalar + // comparisons array to scalar VERIFY( (m1 != (m1(r,c)+1) ).any() ); - VERIFY( (m1 > (m1(r,c)-1) ).any() ); - VERIFY( (m1 < (m1(r,c)+1) ).any() ); - VERIFY( (m1 == m1(r,c) ).any() ); + VERIFY( (m1 > (m1(r,c)-1) ).any() ); + VERIFY( (m1 < (m1(r,c)+1) ).any() ); + VERIFY( (m1 == m1(r,c) ).any() ); + + // comparisons scalar to array + VERIFY( ( (m1(r,c)+1) != m1).any() ); + VERIFY( ( (m1(r,c)-1) < m1).any() ); + VERIFY( ( (m1(r,c)+1) > m1).any() ); + VERIFY( ( m1(r,c) == m1).any() ); // test Select VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) ); @@ -164,21 +217,69 @@ template<typename ArrayType> void array_real(const ArrayType& m) ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), - m3(rows, cols); + m3(rows, cols), + m4 = m1; + + m4 = (m4.abs()==Scalar(0)).select(1,m4); Scalar s1 = internal::random<Scalar>(); - // these tests are mostly to check possible compilation issues. + // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); + VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); - VERIFY_IS_APPROX(m1.tan(), tan(m1)); - + VERIFY_IS_APPROX(m1.atan(), atan(m1)); + VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); + VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); + VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); + + VERIFY_IS_APPROX(m1.arg(), arg(m1)); + VERIFY_IS_APPROX(m1.round(), round(m1)); + VERIFY_IS_APPROX(m1.floor(), floor(m1)); + VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); + VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); + VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); + VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); + VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); + VERIFY_IS_APPROX(m1.abs(), abs(m1)); + VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); + VERIFY_IS_APPROX(m1.square(), square(m1)); + VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); + VERIFY_IS_APPROX(m1.sign(), sign(m1)); - VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1))); - VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1))); + + // avoid NaNs with abs() so verification doesn't fail + m3 = m1.abs(); + VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1))); + VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1))); + VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m1))); + VERIFY_IS_APPROX(m3.log(), log(m3)); + VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); + VERIFY_IS_APPROX(m3.log10(), log10(m3)); + + + VERIFY((!(m1>m2) == (m1<=m2)).all()); + + VERIFY_IS_APPROX(sin(m1.asin()), m1); + VERIFY_IS_APPROX(cos(m1.acos()), m1); + VERIFY_IS_APPROX(tan(m1.atan()), m1); + VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); + VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); + VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); + VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0)); + VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); + VERIFY((Eigen::isnan)((m1*0.0)/0.0).all()); + VERIFY((Eigen::isinf)(m4/0.0).all()); + VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all()); + VERIFY_IS_APPROX(inverse(inverse(m1)),m1); + VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); + VERIFY_IS_APPROX(m3, sqrt(abs2(m1))); + VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); + VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); + VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); @@ -187,52 +288,141 @@ template<typename ArrayType> void array_real(const ArrayType& m) // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); - VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber)); + VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber)); + VERIFY_IS_APPROX((m3 + smallNumber + 1).log() , log1p(abs(m1) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); - VERIFY_IS_APPROX(m1.pow(2), m1.square()); - VERIFY_IS_APPROX(pow(m1,2), m1.square()); + VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); + VERIFY_IS_APPROX((m3 + smallNumber).exp() - 1, expm1(abs(m3) + smallNumber)); - ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); - VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); - - m3 = m1.abs(); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); + VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); + VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); + + VERIFY_IS_APPROX(log10(m3), log(m3)/log(10)); + // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); - + // check inplace transpose m3 = m1; m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1.transpose()); + VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1); + VERIFY_IS_APPROX(m3, m1); } template<typename ArrayType> void array_complex(const ArrayType& m) { typedef typename ArrayType::Index Index; + typedef typename ArrayType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), - m2(rows, cols); + m2(rows, cols), + m4 = m1; + + m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); + m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); + + Array<RealScalar, -1, -1> m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = sqrt(m1(i,j)); - VERIFY_IS_APPROX(m1.sqrt(), m2); - VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1)); + // these tests are mostly to check possible compilation issues with free-functions. + VERIFY_IS_APPROX(m1.sin(), sin(m1)); + VERIFY_IS_APPROX(m1.cos(), cos(m1)); + VERIFY_IS_APPROX(m1.tan(), tan(m1)); + VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); + VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); + VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); + VERIFY_IS_APPROX(m1.arg(), arg(m1)); + VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); + VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); + VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); + VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); + VERIFY_IS_APPROX(m1.log(), log(m1)); + VERIFY_IS_APPROX(m1.log10(), log10(m1)); + VERIFY_IS_APPROX(m1.abs(), abs(m1)); + VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); + VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); + VERIFY_IS_APPROX(m1.square(), square(m1)); + VERIFY_IS_APPROX(m1.cube(), cube(m1)); + VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); + VERIFY_IS_APPROX(m1.sign(), sign(m1)); + + + VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); + VERIFY_IS_APPROX(m1.exp(), exp(m1)); + VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); + + VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); + VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); + VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); + + for (Index i = 0; i < m.rows(); ++i) + for (Index j = 0; j < m.cols(); ++j) + m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j))); + VERIFY_IS_APPROX(arg(m1), m3); + + std::complex<RealScalar> zero(0.0,0.0); + VERIFY((Eigen::isnan)(m1*zero/zero).all()); +#if EIGEN_COMP_MSVC + // msvc complex division is not robust + VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); +#else +#if EIGEN_COMP_CLANG + // clang's complex division is notoriously broken too + if((numext::isinf)(m4(0,0)/RealScalar(0))) { +#endif + VERIFY((Eigen::isinf)(m4/zero).all()); +#if EIGEN_COMP_CLANG + } + else + { + VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); + } +#endif +#endif // MSVC + + VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); + + VERIFY_IS_APPROX(inverse(inverse(m1)),m1); + VERIFY_IS_APPROX(conj(m1.conjugate()), m1); + VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1)))); + VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); + VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); + + VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); + VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); + + // scalar by array division + Scalar s1 = internal::random<Scalar>(); + const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); + s1 += Scalar(tiny); + m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); + VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); + + // check inplace transpose + m2 = m1; + m2.transposeInPlace(); + VERIFY_IS_APPROX(m2, m1.transpose()); + m2.transposeInPlace(); + VERIFY_IS_APPROX(m2, m1); + } template<typename ArrayType> void min_max(const ArrayType& m) @@ -301,7 +491,7 @@ void test_array() VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value)); - typedef CwiseUnaryOp<internal::scalar_sum_op<double>, ArrayXd > Xpr; + typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type, ArrayBase<Xpr> >::value)); |