diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/test/eigen2/eigen2_adjoint.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/test/eigen2/eigen2_adjoint.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_adjoint.cpp | 99 |
1 files changed, 0 insertions, 99 deletions
diff --git a/eigen/test/eigen2/eigen2_adjoint.cpp b/eigen/test/eigen2/eigen2_adjoint.cpp deleted file mode 100644 index c0f8114..0000000 --- a/eigen/test/eigen2/eigen2_adjoint.cpp +++ /dev/null @@ -1,99 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" - -template<typename MatrixType> void adjoint(const MatrixType& m) -{ - /* this test covers the following files: - Transpose.h Conjugate.h Dot.h - */ - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; - typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; - int rows = m.rows(); - int cols = m.cols(); - - RealScalar largerEps = test_precision<RealScalar>(); - if (ei_is_same_type<RealScalar,float>::ret) - largerEps = RealScalar(1e-3f); - - MatrixType m1 = MatrixType::Random(rows, cols), - m2 = MatrixType::Random(rows, cols), - m3(rows, cols), - square = SquareMatrixType::Random(rows, rows); - VectorType v1 = VectorType::Random(rows), - v2 = VectorType::Random(rows), - v3 = VectorType::Random(rows), - vzero = VectorType::Zero(rows); - - Scalar s1 = ei_random<Scalar>(), - s2 = ei_random<Scalar>(); - - // check basic compatibility of adjoint, transpose, conjugate - VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); - VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); - - // check multiplicative behavior - VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); - VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); - - // check basic properties of dot, norm, norm2 - typedef typename NumTraits<Scalar>::Real RealScalar; - VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps)); - VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps)); - VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1)); - VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm()); - if(NumTraits<Scalar>::HasFloatingPoint) - VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); - VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast<RealScalar>(1)); - if(NumTraits<Scalar>::HasFloatingPoint) - VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); - - // check compatibility of dot and adjoint - VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps)); - - // like in testBasicStuff, test operator() to check const-qualification - int r = ei_random<int>(0, rows-1), - c = ei_random<int>(0, cols-1); - VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); - VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); - - if(NumTraits<Scalar>::HasFloatingPoint) - { - // check that Random().normalized() works: tricky as the random xpr must be evaluated by - // normalized() in order to produce a consistent result. - VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); - } - - // check inplace transpose - m3 = m1; - m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1.transpose()); - m3.transposeInPlace(); - VERIFY_IS_APPROX(m3,m1); - -} - -void test_eigen2_adjoint() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); - CALL_SUBTEST_2( adjoint(Matrix3d()) ); - CALL_SUBTEST_3( adjoint(Matrix4f()) ); - CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); - CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); - CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); - } - // test a large matrix only once - CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); -} - |