diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/test/eigen2/eigen2_sparse_product.cpp | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/test/eigen2/eigen2_sparse_product.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_sparse_product.cpp | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/eigen/test/eigen2/eigen2_sparse_product.cpp b/eigen/test/eigen2/eigen2_sparse_product.cpp new file mode 100644 index 0000000..d28e76d --- /dev/null +++ b/eigen/test/eigen2/eigen2_sparse_product.cpp @@ -0,0 +1,115 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "sparse.h" + +template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref) +{ + const int rows = ref.rows(); + const int cols = ref.cols(); + typedef typename SparseMatrixType::Scalar Scalar; + enum { Flags = SparseMatrixType::Flags }; + + double density = std::max(8./(rows*cols), 0.01); + typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; + typedef Matrix<Scalar,Dynamic,1> DenseVector; + + // test matrix-matrix product + { + DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); + DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); + DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); + DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); + SparseMatrixType m2(rows, rows); + SparseMatrixType m3(rows, rows); + SparseMatrixType m4(rows, rows); + initSparse<Scalar>(density, refMat2, m2); + initSparse<Scalar>(density, refMat3, m3); + initSparse<Scalar>(density, refMat4, m4); + VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); + VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); + VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); + VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); + + // sparse * dense + VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); + VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); + VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); + VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); + + // dense * sparse + VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); + VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); + VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); + VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); + + VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); + } + + // test matrix - diagonal product + if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch.... + { + DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); + DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); + DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows)); + SparseMatrixType m2(rows, rows); + SparseMatrixType m3(rows, rows); + initSparse<Scalar>(density, refM2, m2); + initSparse<Scalar>(density, refM3, m3); + VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); + VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); + VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); + VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); + } + + // test self adjoint products + { + DenseMatrix b = DenseMatrix::Random(rows, rows); + DenseMatrix x = DenseMatrix::Random(rows, rows); + DenseMatrix refX = DenseMatrix::Random(rows, rows); + DenseMatrix refUp = DenseMatrix::Zero(rows, rows); + DenseMatrix refLo = DenseMatrix::Zero(rows, rows); + DenseMatrix refS = DenseMatrix::Zero(rows, rows); + SparseMatrixType mUp(rows, rows); + SparseMatrixType mLo(rows, rows); + SparseMatrixType mS(rows, rows); + do { + initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); + } while (refUp.isZero()); + refLo = refUp.transpose().conjugate(); + mLo = mUp.transpose().conjugate(); + refS = refUp + refLo; + refS.diagonal() *= 0.5; + mS = mUp + mLo; + for (int k=0; k<mS.outerSize(); ++k) + for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) + if (it.index() == k) + it.valueRef() *= 0.5; + + VERIFY_IS_APPROX(refS.adjoint(), refS); + VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); + VERIFY_IS_APPROX(mS, refS); + VERIFY_IS_APPROX(x=mS*b, refX=refS*b); + VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b); + VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b); + VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b); + } + +} + +void test_eigen2_sparse_product() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) ); + CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) ); + CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) ); + + CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) ); + } +} |