diff options
| author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
|---|---|---|
| committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
| commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
| tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/test/eigensolver_complex.cpp | |
| parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) | |
don't index Eigen
Diffstat (limited to 'eigen/test/eigensolver_complex.cpp')
| -rw-r--r-- | eigen/test/eigensolver_complex.cpp | 176 |
1 files changed, 0 insertions, 176 deletions
diff --git a/eigen/test/eigensolver_complex.cpp b/eigen/test/eigensolver_complex.cpp deleted file mode 100644 index 7269452..0000000 --- a/eigen/test/eigensolver_complex.cpp +++ /dev/null @@ -1,176 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> -// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "main.h" -#include <limits> -#include <Eigen/Eigenvalues> -#include <Eigen/LU> - -template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0) -{ - bool match = diffs.diagonal().sum() <= tol; - if(match || col==diffs.cols()) - { - return match; - } - else - { - Index n = diffs.cols(); - std::vector<std::pair<Index,Index> > transpositions; - for(Index i=col; i<n; ++i) - { - Index best_index(0); - if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol) - break; - - best_index += col; - - diffs.row(col).swap(diffs.row(best_index)); - if(find_pivot(tol,diffs,col+1)) return true; - diffs.row(col).swap(diffs.row(best_index)); - - // move current pivot to the end - diffs.row(n-(i-col)-1).swap(diffs.row(best_index)); - transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index)); - } - // restore - for(Index k=transpositions.size()-1; k>=0; --k) - diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); - } - return false; -} - -/* Check that two column vectors are approximately equal upto permutations. - * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), - * however this strategy is numerically inacurate because of numerical cancellation issues. - */ -template<typename VectorType> -void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) -{ - typedef typename VectorType::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - - VERIFY(vec1.cols() == 1); - VERIFY(vec2.cols() == 1); - VERIFY(vec1.rows() == vec2.rows()); - - Index n = vec1.rows(); - RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm()); - Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); - - VERIFY( find_pivot(tol, diffs) ); -} - - -template<typename MatrixType> void eigensolver(const MatrixType& m) -{ - /* this test covers the following files: - ComplexEigenSolver.h, and indirectly ComplexSchur.h - */ - Index rows = m.rows(); - Index cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - - MatrixType a = MatrixType::Random(rows,cols); - MatrixType symmA = a.adjoint() * a; - - ComplexEigenSolver<MatrixType> ei0(symmA); - VERIFY_IS_EQUAL(ei0.info(), Success); - VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); - - ComplexEigenSolver<MatrixType> ei1(a); - VERIFY_IS_EQUAL(ei1.info(), Success); - VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); - // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus - // another algorithm so results may differ slightly - verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); - - ComplexEigenSolver<MatrixType> ei2; - ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); - VERIFY_IS_EQUAL(ei2.info(), Success); - VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); - VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); - if (rows > 2) { - ei2.setMaxIterations(1).compute(a); - VERIFY_IS_EQUAL(ei2.info(), NoConvergence); - VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); - } - - ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); - VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); - VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); - - // Regression test for issue #66 - MatrixType z = MatrixType::Zero(rows,cols); - ComplexEigenSolver<MatrixType> eiz(z); - VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); - - MatrixType id = MatrixType::Identity(rows, cols); - VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); - - if (rows > 1 && rows < 20) - { - // Test matrix with NaN - a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); - ComplexEigenSolver<MatrixType> eiNaN(a); - VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); - } - - // regression test for bug 1098 - { - ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); - eig.compute(a.adjoint() * a); - } - - // regression test for bug 478 - { - a.setZero(); - ComplexEigenSolver<MatrixType> ei3(a); - VERIFY_IS_EQUAL(ei3.info(), Success); - VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); - VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); - } -} - -template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) -{ - ComplexEigenSolver<MatrixType> eig; - VERIFY_RAISES_ASSERT(eig.eigenvectors()); - VERIFY_RAISES_ASSERT(eig.eigenvalues()); - - MatrixType a = MatrixType::Random(m.rows(),m.cols()); - eig.compute(a, false); - VERIFY_RAISES_ASSERT(eig.eigenvectors()); -} - -void test_eigensolver_complex() -{ - int s = 0; - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); - s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); - CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); - CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); - CALL_SUBTEST_4( eigensolver(Matrix3f()) ); - TEST_SET_BUT_UNUSED_VARIABLE(s) - } - CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); - s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); - CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); - CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); - CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); - - // Test problem size constructors - CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); - - TEST_SET_BUT_UNUSED_VARIABLE(s) -} |
