diff options
| author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
|---|---|---|
| committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
| commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
| tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/test/redux.cpp | |
| parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) | |
don't index Eigen
Diffstat (limited to 'eigen/test/redux.cpp')
| -rw-r--r-- | eigen/test/redux.cpp | 178 |
1 files changed, 0 insertions, 178 deletions
diff --git a/eigen/test/redux.cpp b/eigen/test/redux.cpp deleted file mode 100644 index 213f080..0000000 --- a/eigen/test/redux.cpp +++ /dev/null @@ -1,178 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> -// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define TEST_ENABLE_TEMPORARY_TRACKING -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -// ^^ see bug 1449 - -#include "main.h" - -template<typename MatrixType> void matrixRedux(const MatrixType& m) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - - Index rows = m.rows(); - Index cols = m.cols(); - - MatrixType m1 = MatrixType::Random(rows, cols); - - // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test - // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. - MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; - - VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); - VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy - Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); - for(int j = 0; j < cols; j++) - for(int i = 0; i < rows; i++) - { - s += m1(i,j); - p *= m1_for_prod(i,j); - minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); - maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); - } - const Scalar mean = s/Scalar(RealScalar(rows*cols)); - - VERIFY_IS_APPROX(m1.sum(), s); - VERIFY_IS_APPROX(m1.mean(), mean); - VERIFY_IS_APPROX(m1_for_prod.prod(), p); - VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); - VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); - - // test slice vectorization assuming assign is ok - Index r0 = internal::random<Index>(0,rows-1); - Index c0 = internal::random<Index>(0,cols-1); - Index r1 = internal::random<Index>(r0+1,rows)-r0; - Index c1 = internal::random<Index>(c0+1,cols)-c0; - VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); - VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); - VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); - VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); - VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); - - // regression for bug 1090 - const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6; - const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6; - if(R1<=rows-r0 && C1<=cols-c0) - { - VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() ); - } - - // test empty objects - VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0)); - VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1)); - - // test nesting complex expression - VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1) ); - Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows,rows); - m2.setRandom(); - VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(),(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1)); -} - -template<typename VectorType> void vectorRedux(const VectorType& w) -{ - using std::abs; - typedef typename VectorType::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - Index size = w.size(); - - VectorType v = VectorType::Random(size); - VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod - - for(int i = 1; i < size; i++) - { - Scalar s(0), p(1); - RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); - for(int j = 0; j < i; j++) - { - s += v[j]; - p *= v_for_prod[j]; - minc = (std::min)(minc, numext::real(v[j])); - maxc = (std::max)(maxc, numext::real(v[j])); - } - VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); - VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); - VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); - VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); - } - - for(int i = 0; i < size-1; i++) - { - Scalar s(0), p(1); - RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); - for(int j = i; j < size; j++) - { - s += v[j]; - p *= v_for_prod[j]; - minc = (std::min)(minc, numext::real(v[j])); - maxc = (std::max)(maxc, numext::real(v[j])); - } - VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); - VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); - VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); - VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); - } - - for(int i = 0; i < size/2; i++) - { - Scalar s(0), p(1); - RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); - for(int j = i; j < size-i; j++) - { - s += v[j]; - p *= v_for_prod[j]; - minc = (std::min)(minc, numext::real(v[j])); - maxc = (std::max)(maxc, numext::real(v[j])); - } - VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); - VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); - VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); - VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); - } - - // test empty objects - VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); - VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); - VERIFY_RAISES_ASSERT(v.head(0).mean()); - VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); - VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); -} - -void test_redux() -{ - // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. - int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); - TEST_SET_BUT_UNUSED_VARIABLE(maxsize); - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); - CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); - CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); - CALL_SUBTEST_2( matrixRedux(Array2f()) ); - CALL_SUBTEST_2( matrixRedux(Array22f()) ); - CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); - CALL_SUBTEST_3( matrixRedux(Array4d()) ); - CALL_SUBTEST_3( matrixRedux(Array44d()) ); - CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); - } - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_7( vectorRedux(Vector4f()) ); - CALL_SUBTEST_7( vectorRedux(Array4f()) ); - CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); - CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); - } -} |
