diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:09:10 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2019-03-03 21:10:13 +0100 |
commit | f0238cfb6997c4acfc2bd200de7295f3fa36968f (patch) | |
tree | b215183760e4f615b9c1dabc1f116383b72a1b55 /eigen/unsupported/Eigen/src/AutoDiff | |
parent | 543edd372a5193d04b3de9f23c176ab439e51b31 (diff) |
don't index Eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src/AutoDiff')
-rw-r--r-- | eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h | 108 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h | 694 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h | 220 |
3 files changed, 0 insertions, 1022 deletions
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h deleted file mode 100644 index 33b6c39..0000000 --- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +++ /dev/null @@ -1,108 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_AUTODIFF_JACOBIAN_H -#define EIGEN_AUTODIFF_JACOBIAN_H - -namespace Eigen -{ - -template<typename Functor> class AutoDiffJacobian : public Functor -{ -public: - AutoDiffJacobian() : Functor() {} - AutoDiffJacobian(const Functor& f) : Functor(f) {} - - // forward constructors -#if EIGEN_HAS_VARIADIC_TEMPLATES - template<typename... T> - AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} -#else - template<typename T0> - AutoDiffJacobian(const T0& a0) : Functor(a0) {} - template<typename T0, typename T1> - AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} - template<typename T0, typename T1, typename T2> - AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} -#endif - - typedef typename Functor::InputType InputType; - typedef typename Functor::ValueType ValueType; - typedef typename ValueType::Scalar Scalar; - - enum { - InputsAtCompileTime = InputType::RowsAtCompileTime, - ValuesAtCompileTime = ValueType::RowsAtCompileTime - }; - - typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; - typedef typename JacobianType::Index Index; - - typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; - typedef AutoDiffScalar<DerivativeType> ActiveScalar; - - typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; - typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; - -#if EIGEN_HAS_VARIADIC_TEMPLATES - // Some compilers don't accept variadic parameters after a default parameter, - // i.e., we can't just write _jac=0 but we need to overload operator(): - EIGEN_STRONG_INLINE - void operator() (const InputType& x, ValueType* v) const - { - this->operator()(x, v, 0); - } - template<typename... ParamsType> - void operator() (const InputType& x, ValueType* v, JacobianType* _jac, - const ParamsType&... Params) const -#else - void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const -#endif - { - eigen_assert(v!=0); - - if (!_jac) - { -#if EIGEN_HAS_VARIADIC_TEMPLATES - Functor::operator()(x, v, Params...); -#else - Functor::operator()(x, v); -#endif - return; - } - - JacobianType& jac = *_jac; - - ActiveInput ax = x.template cast<ActiveScalar>(); - ActiveValue av(jac.rows()); - - if(InputsAtCompileTime==Dynamic) - for (Index j=0; j<jac.rows(); j++) - av[j].derivatives().resize(x.rows()); - - for (Index i=0; i<jac.cols(); i++) - ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); - -#if EIGEN_HAS_VARIADIC_TEMPLATES - Functor::operator()(ax, &av, Params...); -#else - Functor::operator()(ax, &av); -#endif - - for (Index i=0; i<jac.rows(); i++) - { - (*v)[i] = av[i].value(); - jac.row(i) = av[i].derivatives(); - } - } -}; - -} - -#endif // EIGEN_AUTODIFF_JACOBIAN_H diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h deleted file mode 100644 index 2f50e99..0000000 --- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +++ /dev/null @@ -1,694 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_AUTODIFF_SCALAR_H -#define EIGEN_AUTODIFF_SCALAR_H - -namespace Eigen { - -namespace internal { - -template<typename A, typename B> -struct make_coherent_impl { - static void run(A&, B&) {} -}; - -// resize a to match b is a.size()==0, and conversely. -template<typename A, typename B> -void make_coherent(const A& a, const B&b) -{ - make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived()); -} - -template<typename _DerType, bool Enable> struct auto_diff_special_op; - -} // end namespace internal - -template<typename _DerType> class AutoDiffScalar; - -template<typename NewDerType> -inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) { - return AutoDiffScalar<NewDerType>(value,der); -} - -/** \class AutoDiffScalar - * \brief A scalar type replacement with automatic differentation capability - * - * \param _DerType the vector type used to store/represent the derivatives. The base scalar type - * as well as the number of derivatives to compute are determined from this type. - * Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf - * if the number of derivatives is not known at compile time, and/or, the number - * of derivatives is large. - * Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a - * existing vector into an AutoDiffScalar. - * Finally, _DerType can also be any Eigen compatible expression. - * - * This class represents a scalar value while tracking its respective derivatives using Eigen's expression - * template mechanism. - * - * It supports the following list of global math function: - * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, - * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, - * - internal::conj, internal::real, internal::imag, numext::abs2. - * - * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, - * in that case, the expression template mechanism only occurs at the top Matrix level, - * while derivatives are computed right away. - * - */ - -template<typename _DerType> -class AutoDiffScalar - : public internal::auto_diff_special_op - <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar, - typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> -{ - public: - typedef internal::auto_diff_special_op - <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar, - typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base; - typedef typename internal::remove_all<_DerType>::type DerType; - typedef typename internal::traits<DerType>::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real Real; - - using Base::operator+; - using Base::operator*; - - /** Default constructor without any initialization. */ - AutoDiffScalar() {} - - /** Constructs an active scalar from its \a value, - and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */ - AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) - : m_value(value), m_derivatives(DerType::Zero(nbDer)) - { - m_derivatives.coeffRef(derNumber) = Scalar(1); - } - - /** Conversion from a scalar constant to an active scalar. - * The derivatives are set to zero. */ - /*explicit*/ AutoDiffScalar(const Real& value) - : m_value(value) - { - if(m_derivatives.size()>0) - m_derivatives.setZero(); - } - - /** Constructs an active scalar from its \a value and derivatives \a der */ - AutoDiffScalar(const Scalar& value, const DerType& der) - : m_value(value), m_derivatives(der) - {} - - template<typename OtherDerType> - AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other -#ifndef EIGEN_PARSED_BY_DOXYGEN - , typename internal::enable_if< - internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value - && internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0 -#endif - ) - : m_value(other.value()), m_derivatives(other.derivatives()) - {} - - friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a) - { - return s << a.value(); - } - - AutoDiffScalar(const AutoDiffScalar& other) - : m_value(other.value()), m_derivatives(other.derivatives()) - {} - - template<typename OtherDerType> - inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) - { - m_value = other.value(); - m_derivatives = other.derivatives(); - return *this; - } - - inline AutoDiffScalar& operator=(const AutoDiffScalar& other) - { - m_value = other.value(); - m_derivatives = other.derivatives(); - return *this; - } - - inline AutoDiffScalar& operator=(const Scalar& other) - { - m_value = other; - if(m_derivatives.size()>0) - m_derivatives.setZero(); - return *this; - } - -// inline operator const Scalar& () const { return m_value; } -// inline operator Scalar& () { return m_value; } - - inline const Scalar& value() const { return m_value; } - inline Scalar& value() { return m_value; } - - inline const DerType& derivatives() const { return m_derivatives; } - inline DerType& derivatives() { return m_derivatives; } - - inline bool operator< (const Scalar& other) const { return m_value < other; } - inline bool operator<=(const Scalar& other) const { return m_value <= other; } - inline bool operator> (const Scalar& other) const { return m_value > other; } - inline bool operator>=(const Scalar& other) const { return m_value >= other; } - inline bool operator==(const Scalar& other) const { return m_value == other; } - inline bool operator!=(const Scalar& other) const { return m_value != other; } - - friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); } - friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); } - friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); } - friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); } - friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); } - friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); } - - template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); } - template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); } - template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); } - template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); } - template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); } - template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); } - - inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const - { - return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); - } - - friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) - { - return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); - } - -// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const -// { -// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); -// } - -// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b) -// { -// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); -// } - - inline AutoDiffScalar& operator+=(const Scalar& other) - { - value() += other; - return *this; - } - - template<typename OtherDerType> - inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> > - operator+(const AutoDiffScalar<OtherDerType>& other) const - { - internal::make_coherent(m_derivatives, other.derivatives()); - return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >( - m_value + other.value(), - m_derivatives + other.derivatives()); - } - - template<typename OtherDerType> - inline AutoDiffScalar& - operator+=(const AutoDiffScalar<OtherDerType>& other) - { - (*this) = (*this) + other; - return *this; - } - - inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const - { - return AutoDiffScalar<DerType&>(m_value - b, m_derivatives); - } - - friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > - operator-(const Scalar& a, const AutoDiffScalar& b) - { - return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > - (a - b.value(), -b.derivatives()); - } - - inline AutoDiffScalar& operator-=(const Scalar& other) - { - value() -= other; - return *this; - } - - template<typename OtherDerType> - inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> > - operator-(const AutoDiffScalar<OtherDerType>& other) const - { - internal::make_coherent(m_derivatives, other.derivatives()); - return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >( - m_value - other.value(), - m_derivatives - other.derivatives()); - } - - template<typename OtherDerType> - inline AutoDiffScalar& - operator-=(const AutoDiffScalar<OtherDerType>& other) - { - *this = *this - other; - return *this; - } - - inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> > - operator-() const - { - return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >( - -m_value, - -m_derivatives); - } - - inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > - operator*(const Scalar& other) const - { - return MakeAutoDiffScalar(m_value * other, m_derivatives * other); - } - - friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > - operator*(const Scalar& other, const AutoDiffScalar& a) - { - return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other); - } - -// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > -// operator*(const Real& other) const -// { -// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( -// m_value * other, -// (m_derivatives * other)); -// } -// -// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > -// operator*(const Real& other, const AutoDiffScalar& a) -// { -// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( -// a.value() * other, -// a.derivatives() * other); -// } - - inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > - operator/(const Scalar& other) const - { - return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other))); - } - - friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) > - operator/(const Scalar& other, const AutoDiffScalar& a) - { - return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value()))); - } - -// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > -// operator/(const Real& other) const -// { -// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( -// m_value / other, -// (m_derivatives * (Real(1)/other))); -// } -// -// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > -// operator/(const Real& other, const AutoDiffScalar& a) -// { -// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( -// other / a.value(), -// a.derivatives() * (-Real(1)/other)); -// } - - template<typename OtherDerType> - inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( - CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA - const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA - const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) > - operator/(const AutoDiffScalar<OtherDerType>& other) const - { - internal::make_coherent(m_derivatives, other.derivatives()); - return MakeAutoDiffScalar( - m_value / other.value(), - ((m_derivatives * other.value()) - (other.derivatives() * m_value)) - * (Scalar(1)/(other.value()*other.value()))); - } - - template<typename OtherDerType> - inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>, - const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product), - const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > > - operator*(const AutoDiffScalar<OtherDerType>& other) const - { - internal::make_coherent(m_derivatives, other.derivatives()); - return MakeAutoDiffScalar( - m_value * other.value(), - (m_derivatives * other.value()) + (other.derivatives() * m_value)); - } - - inline AutoDiffScalar& operator*=(const Scalar& other) - { - *this = *this * other; - return *this; - } - - template<typename OtherDerType> - inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) - { - *this = *this * other; - return *this; - } - - inline AutoDiffScalar& operator/=(const Scalar& other) - { - *this = *this / other; - return *this; - } - - template<typename OtherDerType> - inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) - { - *this = *this / other; - return *this; - } - - protected: - Scalar m_value; - DerType m_derivatives; - -}; - -namespace internal { - -template<typename _DerType> -struct auto_diff_special_op<_DerType, true> -// : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real, -// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> -{ - typedef typename remove_all<_DerType>::type DerType; - typedef typename traits<DerType>::Scalar Scalar; - typedef typename NumTraits<Scalar>::Real Real; - -// typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real, -// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base; - -// using Base::operator+; -// using Base::operator+=; -// using Base::operator-; -// using Base::operator-=; -// using Base::operator*; -// using Base::operator*=; - - const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); } - AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); } - - - inline const AutoDiffScalar<DerType&> operator+(const Real& other) const - { - return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives()); - } - - friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b) - { - return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); - } - - inline AutoDiffScalar<_DerType>& operator+=(const Real& other) - { - derived().value() += other; - return derived(); - } - - - inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type > - operator*(const Real& other) const - { - return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >( - derived().value() * other, - derived().derivatives() * other); - } - - friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type > - operator*(const Real& other, const AutoDiffScalar<_DerType>& a) - { - return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >( - a.value() * other, - a.derivatives() * other); - } - - inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other) - { - *this = *this * other; - return derived(); - } -}; - -template<typename _DerType> -struct auto_diff_special_op<_DerType, false> -{ - void operator*() const; - void operator-() const; - void operator+() const; -}; - -template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B> -struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> { - typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; - static void run(A& a, B& b) { - if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) - { - a.resize(b.size()); - a.setZero(); - } - } -}; - -template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> -struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { - typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; - static void run(A& a, B& b) { - if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) - { - b.resize(a.size()); - b.setZero(); - } - } -}; - -template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, - typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols> -struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, - Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > { - typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A; - typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B; - static void run(A& a, B& b) { - if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0)) - { - a.resize(b.size()); - a.setZero(); - } - else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0)) - { - b.resize(a.size()); - b.setZero(); - } - } -}; - -} // end namespace internal - -template<typename DerType, typename BinOp> -struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp> -{ - typedef AutoDiffScalar<DerType> ReturnType; -}; - -template<typename DerType, typename BinOp> -struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp> -{ - typedef AutoDiffScalar<DerType> ReturnType; -}; - - -// The following is an attempt to let Eigen's known about expression template, but that's more tricky! - -// template<typename DerType, typename BinOp> -// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp> -// { -// enum { Defined = 1 }; -// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType; -// }; -// -// template<typename DerType1,typename DerType2, typename BinOp> -// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp> -// { -// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value }; -// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType; -// }; - -#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \ - template<typename DerType> \ - inline const Eigen::AutoDiffScalar< \ - EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \ - FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \ - using namespace Eigen; \ - typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \ - EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \ - CODE; \ - } - -template<typename DerType> -inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; } -template<typename DerType> -inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; } -template<typename DerType> -inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; } -template<typename DerType, typename T> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) { - typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS; - return (x <= y ? ADS(x) : ADS(y)); -} -template<typename DerType, typename T> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) { - typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS; - return (x >= y ? ADS(x) : ADS(y)); -} -template<typename DerType, typename T> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) { - typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS; - return (x < y ? ADS(x) : ADS(y)); -} -template<typename DerType, typename T> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) { - typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS; - return (x > y ? ADS(x) : ADS(y)); -} -template<typename DerType> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { - return (x.value() < y.value() ? x : y); -} -template<typename DerType> -inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { - return (x.value() >= y.value() ? x : y); -} - - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, - using std::abs; - return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, - using numext::abs2; - return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, - using std::sqrt; - Scalar sqrtx = sqrt(x.value()); - return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, - using std::cos; - using std::sin; - return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, - using std::sin; - using std::cos; - return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, - using std::exp; - Scalar expx = exp(x.value()); - return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, - using std::log; - return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));) - -template<typename DerType> -inline const Eigen::AutoDiffScalar< -EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) > -pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y) -{ - using namespace Eigen; - using std::pow; - return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1))); -} - - -template<typename DerTypeA,typename DerTypeB> -inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> > -atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) -{ - using std::atan2; - typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar; - typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS; - PlainADS ret; - ret.value() = atan2(a.value(), b.value()); - - Scalar squared_hypot = a.value() * a.value() + b.value() * b.value(); - - // if (squared_hypot==0) the derivation is undefined and the following results in a NaN: - ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot; - - return ret; -} - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, - using std::tan; - using std::cos; - return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, - using std::sqrt; - using std::asin; - return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, - using std::sqrt; - using std::acos; - return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh, - using std::cosh; - using std::tanh; - return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, - using std::sinh; - using std::cosh; - return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));) - -EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, - using std::sinh; - using std::cosh; - return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));) - -#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY - -template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> > - : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real > -{ - typedef typename internal::remove_all<DerType>::type DerTypeCleaned; - typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime, - 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real; - typedef AutoDiffScalar<DerType> NonInteger; - typedef AutoDiffScalar<DerType> Nested; - typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal; - enum{ - RequireInitialization = 1 - }; -}; - -} - -namespace std { -template <typename T> -class numeric_limits<Eigen::AutoDiffScalar<T> > - : public numeric_limits<typename T::Scalar> {}; - -} // namespace std - -#endif // EIGEN_AUTODIFF_SCALAR_H diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h deleted file mode 100644 index 8c2d048..0000000 --- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +++ /dev/null @@ -1,220 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_AUTODIFF_VECTOR_H -#define EIGEN_AUTODIFF_VECTOR_H - -namespace Eigen { - -/* \class AutoDiffScalar - * \brief A scalar type replacement with automatic differentation capability - * - * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f) - * - * This class represents a scalar value while tracking its respective derivatives. - * - * It supports the following list of global math function: - * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, - * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, - * - internal::conj, internal::real, internal::imag, numext::abs2. - * - * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, - * in that case, the expression template mechanism only occurs at the top Matrix level, - * while derivatives are computed right away. - * - */ -template<typename ValueType, typename JacobianType> -class AutoDiffVector -{ - public: - //typedef typename internal::traits<ValueType>::Scalar Scalar; - typedef typename internal::traits<ValueType>::Scalar BaseScalar; - typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar; - typedef ActiveScalar Scalar; - typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType; - typedef typename JacobianType::Index Index; - - inline AutoDiffVector() {} - - inline AutoDiffVector(const ValueType& values) - : m_values(values) - { - m_jacobian.setZero(); - } - - - CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } - const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } - - CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } - const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } - - CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } - const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } - - Index size() const { return m_values.size(); } - - // FIXME here we could return an expression of the sum - Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); } - - - inline AutoDiffVector(const ValueType& values, const JacobianType& jac) - : m_values(values), m_jacobian(jac) - {} - - template<typename OtherValueType, typename OtherJacobianType> - inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other) - : m_values(other.values()), m_jacobian(other.jacobian()) - {} - - inline AutoDiffVector(const AutoDiffVector& other) - : m_values(other.values()), m_jacobian(other.jacobian()) - {} - - template<typename OtherValueType, typename OtherJacobianType> - inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other) - { - m_values = other.values(); - m_jacobian = other.jacobian(); - return *this; - } - - inline AutoDiffVector& operator=(const AutoDiffVector& other) - { - m_values = other.values(); - m_jacobian = other.jacobian(); - return *this; - } - - inline const ValueType& values() const { return m_values; } - inline ValueType& values() { return m_values; } - - inline const JacobianType& jacobian() const { return m_jacobian; } - inline JacobianType& jacobian() { return m_jacobian; } - - template<typename OtherValueType,typename OtherJacobianType> - inline const AutoDiffVector< - typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type, - typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type > - operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const - { - return AutoDiffVector< - typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type, - typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >( - m_values + other.values(), - m_jacobian + other.jacobian()); - } - - template<typename OtherValueType, typename OtherJacobianType> - inline AutoDiffVector& - operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) - { - m_values += other.values(); - m_jacobian += other.jacobian(); - return *this; - } - - template<typename OtherValueType,typename OtherJacobianType> - inline const AutoDiffVector< - typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type, - typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type > - operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const - { - return AutoDiffVector< - typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type, - typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >( - m_values - other.values(), - m_jacobian - other.jacobian()); - } - - template<typename OtherValueType, typename OtherJacobianType> - inline AutoDiffVector& - operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) - { - m_values -= other.values(); - m_jacobian -= other.jacobian(); - return *this; - } - - inline const AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type > - operator-() const - { - return AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >( - -m_values, - -m_jacobian); - } - - inline const AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type> - operator*(const BaseScalar& other) const - { - return AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >( - m_values * other, - m_jacobian * other); - } - - friend inline const AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type > - operator*(const Scalar& other, const AutoDiffVector& v) - { - return AutoDiffVector< - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, - typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >( - v.values() * other, - v.jacobian() * other); - } - -// template<typename OtherValueType,typename OtherJacobianType> -// inline const AutoDiffVector< -// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType> -// CwiseBinaryOp<internal::scalar_sum_op<Scalar>, -// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>, -// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > > -// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const -// { -// return AutoDiffVector< -// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType> -// CwiseBinaryOp<internal::scalar_sum_op<Scalar>, -// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>, -// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >( -// m_values.cwise() * other.values(), -// (m_jacobian * other.values()) + (m_values * other.jacobian())); -// } - - inline AutoDiffVector& operator*=(const Scalar& other) - { - m_values *= other; - m_jacobian *= other; - return *this; - } - - template<typename OtherValueType,typename OtherJacobianType> - inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) - { - *this = *this * other; - return *this; - } - - protected: - ValueType m_values; - JacobianType m_jacobian; - -}; - -} - -#endif // EIGEN_AUTODIFF_VECTOR_H |