diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2016-09-18 12:42:15 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2016-11-02 15:12:04 +0100 |
commit | 44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch) | |
tree | 6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h | |
parent | f3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff) |
update
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h | 451 |
1 files changed, 451 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h new file mode 100644 index 0000000..88dba54 --- /dev/null +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h @@ -0,0 +1,451 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> +// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIX_EXPONENTIAL +#define EIGEN_MATRIX_EXPONENTIAL + +#include "StemFunction.h" + +namespace Eigen { + +/** \ingroup MatrixFunctions_Module + * \brief Class for computing the matrix exponential. + * \tparam MatrixType type of the argument of the exponential, + * expected to be an instantiation of the Matrix class template. + */ +template <typename MatrixType> +class MatrixExponential { + + public: + + /** \brief Constructor. + * + * The class stores a reference to \p M, so it should not be + * changed (or destroyed) before compute() is called. + * + * \param[in] M matrix whose exponential is to be computed. + */ + MatrixExponential(const MatrixType &M); + + /** \brief Computes the matrix exponential. + * + * \param[out] result the matrix exponential of \p M in the constructor. + */ + template <typename ResultType> + void compute(ResultType &result); + + private: + + // Prevent copying + MatrixExponential(const MatrixExponential&); + MatrixExponential& operator=(const MatrixExponential&); + + /** \brief Compute the (3,3)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param[in] A Argument of matrix exponential + */ + void pade3(const MatrixType &A); + + /** \brief Compute the (5,5)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param[in] A Argument of matrix exponential + */ + void pade5(const MatrixType &A); + + /** \brief Compute the (7,7)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param[in] A Argument of matrix exponential + */ + void pade7(const MatrixType &A); + + /** \brief Compute the (9,9)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param[in] A Argument of matrix exponential + */ + void pade9(const MatrixType &A); + + /** \brief Compute the (13,13)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param[in] A Argument of matrix exponential + */ + void pade13(const MatrixType &A); + + /** \brief Compute the (17,17)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * This function activates only if your long double is double-double or quadruple. + * + * \param[in] A Argument of matrix exponential + */ + void pade17(const MatrixType &A); + + /** \brief Compute Padé approximant to the exponential. + * + * Computes \c m_U, \c m_V and \c m_squarings such that + * \f$ (V+U)(V-U)^{-1} \f$ is a Padé of + * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The + * degree of the Padé approximant and the value of + * squarings are chosen such that the approximation error is no + * more than the round-off error. + * + * The argument of this function should correspond with the (real + * part of) the entries of \c m_M. It is used to select the + * correct implementation using overloading. + */ + void computeUV(double); + + /** \brief Compute Padé approximant to the exponential. + * + * \sa computeUV(double); + */ + void computeUV(float); + + /** \brief Compute Padé approximant to the exponential. + * + * \sa computeUV(double); + */ + void computeUV(long double); + + typedef typename internal::traits<MatrixType>::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename std::complex<RealScalar> ComplexScalar; + + /** \brief Reference to matrix whose exponential is to be computed. */ + typename internal::nested<MatrixType>::type m_M; + + /** \brief Odd-degree terms in numerator of Padé approximant. */ + MatrixType m_U; + + /** \brief Even-degree terms in numerator of Padé approximant. */ + MatrixType m_V; + + /** \brief Used for temporary storage. */ + MatrixType m_tmp1; + + /** \brief Used for temporary storage. */ + MatrixType m_tmp2; + + /** \brief Identity matrix of the same size as \c m_M. */ + MatrixType m_Id; + + /** \brief Number of squarings required in the last step. */ + int m_squarings; + + /** \brief L1 norm of m_M. */ + RealScalar m_l1norm; +}; + +template <typename MatrixType> +MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) : + m_M(M), + m_U(M.rows(),M.cols()), + m_V(M.rows(),M.cols()), + m_tmp1(M.rows(),M.cols()), + m_tmp2(M.rows(),M.cols()), + m_Id(MatrixType::Identity(M.rows(), M.cols())), + m_squarings(0), + m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff()) +{ + /* empty body */ +} + +template <typename MatrixType> +template <typename ResultType> +void MatrixExponential<MatrixType>::compute(ResultType &result) +{ +#if LDBL_MANT_DIG > 112 // rarely happens + if(sizeof(RealScalar) > 14) { + result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp); + return; + } +#endif + computeUV(RealScalar()); + m_tmp1 = m_U + m_V; // numerator of Pade approximant + m_tmp2 = -m_U + m_V; // denominator of Pade approximant + result = m_tmp2.partialPivLu().solve(m_tmp1); + for (int i=0; i<m_squarings; i++) + result *= result; // undo scaling by repeated squaring +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A) +{ + const RealScalar b[] = {120., 60., 12., 1.}; + m_tmp1.noalias() = A * A; + m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[2]*m_tmp1 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A) +{ + const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.}; + MatrixType A2 = A * A; + m_tmp1.noalias() = A2 * A2; + m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A) +{ + const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + m_tmp1.noalias() = A4 * A2; + m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A) +{ + const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., + 2162160., 110880., 3960., 90., 1.}; + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + MatrixType A6 = A4 * A2; + m_tmp1.noalias() = A6 * A2; + m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A) +{ + const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., + 1187353796428800., 129060195264000., 10559470521600., 670442572800., + 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + m_tmp1.noalias() = A4 * A2; + m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage + m_tmp2.noalias() = m_tmp1 * m_V; + m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2; + m_V.noalias() = m_tmp1 * m_tmp2; + m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +#if LDBL_MANT_DIG > 64 +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A) +{ + const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, + 100610229646136770560000.L, 15720348382208870400000.L, + 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, + 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, + 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, + 46512.L, 306.L, 1.L}; + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + MatrixType A6 = A4 * A2; + m_tmp1.noalias() = A4 * A4; + m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage + m_tmp2.noalias() = m_tmp1 * m_V; + m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2; + m_V.noalias() = m_tmp1 * m_tmp2; + m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} +#endif + +template <typename MatrixType> +void MatrixExponential<MatrixType>::computeUV(float) +{ + using std::frexp; + using std::pow; + if (m_l1norm < 4.258730016922831e-001) { + pade3(m_M); + } else if (m_l1norm < 1.880152677804762e+000) { + pade5(m_M); + } else { + const float maxnorm = 3.925724783138660f; + frexp(m_l1norm / maxnorm, &m_squarings); + if (m_squarings < 0) m_squarings = 0; + MatrixType A = m_M / Scalar(pow(2, m_squarings)); + pade7(A); + } +} + +template <typename MatrixType> +void MatrixExponential<MatrixType>::computeUV(double) +{ + using std::frexp; + using std::pow; + if (m_l1norm < 1.495585217958292e-002) { + pade3(m_M); + } else if (m_l1norm < 2.539398330063230e-001) { + pade5(m_M); + } else if (m_l1norm < 9.504178996162932e-001) { + pade7(m_M); + } else if (m_l1norm < 2.097847961257068e+000) { + pade9(m_M); + } else { + const double maxnorm = 5.371920351148152; + frexp(m_l1norm / maxnorm, &m_squarings); + if (m_squarings < 0) m_squarings = 0; + MatrixType A = m_M / Scalar(pow(2, m_squarings)); + pade13(A); + } +} + +template <typename MatrixType> +void MatrixExponential<MatrixType>::computeUV(long double) +{ + using std::frexp; + using std::pow; +#if LDBL_MANT_DIG == 53 // double precision + computeUV(double()); +#elif LDBL_MANT_DIG <= 64 // extended precision + if (m_l1norm < 4.1968497232266989671e-003L) { + pade3(m_M); + } else if (m_l1norm < 1.1848116734693823091e-001L) { + pade5(m_M); + } else if (m_l1norm < 5.5170388480686700274e-001L) { + pade7(m_M); + } else if (m_l1norm < 1.3759868875587845383e+000L) { + pade9(m_M); + } else { + const long double maxnorm = 4.0246098906697353063L; + frexp(m_l1norm / maxnorm, &m_squarings); + if (m_squarings < 0) m_squarings = 0; + MatrixType A = m_M / Scalar(pow(2, m_squarings)); + pade13(A); + } +#elif LDBL_MANT_DIG <= 106 // double-double + if (m_l1norm < 3.2787892205607026992947488108213e-005L) { + pade3(m_M); + } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) { + pade5(m_M); + } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) { + pade7(m_M); + } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) { + pade9(m_M); + } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) { + pade13(m_M); + } else { + const long double maxnorm = 3.2579440895405400856599663723517L; + frexp(m_l1norm / maxnorm, &m_squarings); + if (m_squarings < 0) m_squarings = 0; + MatrixType A = m_M / pow(Scalar(2), m_squarings); + pade17(A); + } +#elif LDBL_MANT_DIG <= 112 // quadruple precison + if (m_l1norm < 1.639394610288918690547467954466970e-005L) { + pade3(m_M); + } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) { + pade5(m_M); + } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) { + pade7(m_M); + } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) { + pade9(m_M); + } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) { + pade13(m_M); + } else { + const long double maxnorm = 2.884233277829519311757165057717815L; + frexp(m_l1norm / maxnorm, &m_squarings); + if (m_squarings < 0) m_squarings = 0; + MatrixType A = m_M / Scalar(pow(2, m_squarings)); + pade17(A); + } +#else + // this case should be handled in compute() + eigen_assert(false && "Bug in MatrixExponential"); +#endif // LDBL_MANT_DIG +} + +/** \ingroup MatrixFunctions_Module + * + * \brief Proxy for the matrix exponential of some matrix (expression). + * + * \tparam Derived Type of the argument to the matrix exponential. + * + * This class holds the argument to the matrix exponential until it + * is assigned or evaluated for some other reason (so the argument + * should not be changed in the meantime). It is the return type of + * MatrixBase::exp() and most of the time this is the only way it is + * used. + */ +template<typename Derived> struct MatrixExponentialReturnValue +: public ReturnByValue<MatrixExponentialReturnValue<Derived> > +{ + typedef typename Derived::Index Index; + public: + /** \brief Constructor. + * + * \param[in] src %Matrix (expression) forming the argument of the + * matrix exponential. + */ + MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } + + /** \brief Compute the matrix exponential. + * + * \param[out] result the matrix exponential of \p src in the + * constructor. + */ + template <typename ResultType> + inline void evalTo(ResultType& result) const + { + const typename Derived::PlainObject srcEvaluated = m_src.eval(); + MatrixExponential<typename Derived::PlainObject> me(srcEvaluated); + me.compute(result); + } + + Index rows() const { return m_src.rows(); } + Index cols() const { return m_src.cols(); } + + protected: + const Derived& m_src; + private: + MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&); +}; + +namespace internal { +template<typename Derived> +struct traits<MatrixExponentialReturnValue<Derived> > +{ + typedef typename Derived::PlainObject ReturnType; +}; +} + +template <typename Derived> +const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const +{ + eigen_assert(rows() == cols()); + return MatrixExponentialReturnValue<Derived>(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_MATRIX_EXPONENTIAL |