diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/Eigen/src/SVD/JacobiSVD.h | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/Eigen/src/SVD/JacobiSVD.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/JacobiSVD.h | 782 |
1 files changed, 0 insertions, 782 deletions
diff --git a/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h b/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h deleted file mode 100644 index 02fac40..0000000 --- a/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h +++ /dev/null @@ -1,782 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_JACOBISVD_H -#define EIGEN_JACOBISVD_H - -namespace Eigen { - -namespace internal { -// forward declaration (needed by ICC) -// the empty body is required by MSVC -template<typename MatrixType, int QRPreconditioner, - bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> -struct svd_precondition_2x2_block_to_be_real {}; - -/*** QR preconditioners (R-SVD) - *** - *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. - *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for - *** JacobiSVD which by itself is only able to work on square matrices. - ***/ - -enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; - -template<typename MatrixType, int QRPreconditioner, int Case> -struct qr_preconditioner_should_do_anything -{ - enum { a = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, - b = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, - ret = !( (QRPreconditioner == NoQRPreconditioner) || - (Case == PreconditionIfMoreColsThanRows && bool(a)) || - (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) - }; -}; - -template<typename MatrixType, int QRPreconditioner, int Case, - bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret -> struct qr_preconditioner_impl {}; - -template<typename MatrixType, int QRPreconditioner, int Case> -class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> -{ -public: - typedef typename MatrixType::Index Index; - void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} - bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) - { - return false; - } -}; - -/*** preconditioner using FullPivHouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime - }; - typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; - - void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - } - - bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } -private: - typedef FullPivHouseholderQR<MatrixType> QRType; - QRType m_qr; - WorkspaceType m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - m_adjoint.resize(svd.cols(), svd.rows()); - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } -private: - typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** preconditioner using ColPivHouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - - void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } - -private: - typedef ColPivHouseholderQR<MatrixType> QRType; - QRType m_qr; - typename internal::plain_col_type<MatrixType>::type m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } - -private: - typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** preconditioner using HouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - - void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); - return true; - } - return false; - } -private: - typedef HouseholderQR<MatrixType> QRType; - QRType m_qr; - typename internal::plain_col_type<MatrixType>::type m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); - return true; - } - else return false; - } - -private: - typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** 2x2 SVD implementation - *** - *** JacobiSVD consists in performing a series of 2x2 SVD subproblems - ***/ - -template<typename MatrixType, int QRPreconditioner> -struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> -{ - typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename SVD::Index Index; - static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {} -}; - -template<typename MatrixType, int QRPreconditioner> -struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> -{ - typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename SVD::Index Index; - static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q) - { - using std::sqrt; - Scalar z; - JacobiRotation<Scalar> rot; - RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); - if(n==0) - { - z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.row(p) *= z; - if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - else - { - rot.c() = conj(work_matrix.coeff(p,p)) / n; - rot.s() = work_matrix.coeff(q,p) / n; - work_matrix.applyOnTheLeft(p,q,rot); - if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); - if(work_matrix.coeff(p,q) != Scalar(0)) - { - Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.col(q) *= z; - if(svd.computeV()) svd.m_matrixV.col(q) *= z; - } - if(work_matrix.coeff(q,q) != Scalar(0)) - { - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - } - } -}; - -template<typename MatrixType, typename RealScalar, typename Index> -void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, - JacobiRotation<RealScalar> *j_left, - JacobiRotation<RealScalar> *j_right) -{ - using std::sqrt; - Matrix<RealScalar,2,2> m; - m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), - numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); - JacobiRotation<RealScalar> rot1; - RealScalar t = m.coeff(0,0) + m.coeff(1,1); - RealScalar d = m.coeff(1,0) - m.coeff(0,1); - if(t == RealScalar(0)) - { - rot1.c() = RealScalar(0); - rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1); - } - else - { - RealScalar u = d / t; - rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u)); - rot1.s() = rot1.c() * u; - } - m.applyOnTheLeft(0,1,rot1); - j_right->makeJacobi(m,0,1); - *j_left = rot1 * j_right->transpose(); -} - -} // end namespace internal - -/** \ingroup SVD_Module - * - * - * \class JacobiSVD - * - * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix - * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally - * for the R-SVD step for non-square matrices. See discussion of possible values below. - * - * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product - * \f[ A = U S V^* \f] - * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; - * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left - * and right \em singular \em vectors of \a A respectively. - * - * Singular values are always sorted in decreasing order. - * - * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. - * - * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the - * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual - * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, - * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. - * - * Here's an example demonstrating basic usage: - * \include JacobiSVD_basic.cpp - * Output: \verbinclude JacobiSVD_basic.out - * - * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than - * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and - * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. - * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. - * - * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to - * terminate in finite (and reasonable) time. - * - * The possible values for QRPreconditioner are: - * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. - * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. - * Contrary to other QRs, it doesn't allow computing thin unitaries. - * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. - * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization - * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive - * process is more reliable than the optimized bidiagonal SVD iterations. - * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing - * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in - * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking - * if QR preconditioning is needed before applying it anyway. - * - * \sa MatrixBase::jacobiSvd() - */ -template<typename _MatrixType, int QRPreconditioner> -class JacobiSVD : public SVDBase<_MatrixType> -{ - public: - - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, - MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> - MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, - MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> - MatrixVType; - typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; - typedef typename internal::plain_row_type<MatrixType>::type RowType; - typedef typename internal::plain_col_type<MatrixType>::type ColType; - typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, - MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> - WorkMatrixType; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via JacobiSVD::compute(const MatrixType&). - */ - JacobiSVD() - : SVDBase<_MatrixType>::SVDBase() - {} - - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem size. - * \sa JacobiSVD() - */ - JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase() - { - allocate(rows, cols, computationOptions); - } - - /** \brief Constructor performing the decomposition of given matrix. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase() - { - compute(matrix, computationOptions); - } - - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix) - { - return compute(matrix, this->m_computationOptions); - } - - /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * - * \param b the right-hand-side of the equation to solve. - * - * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. - * - * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. - * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. - */ - template<typename Rhs> - inline const internal::solve_retval<JacobiSVD, Rhs> - solve(const MatrixBase<Rhs>& b) const - { - eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized."); - eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); - return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived()); - } - - - - private: - void allocate(Index rows, Index cols, unsigned int computationOptions); - - protected: - WorkMatrixType m_workMatrix; - - template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> - friend struct internal::svd_precondition_2x2_block_to_be_real; - template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> - friend struct internal::qr_preconditioner_impl; - - internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; - internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; -}; - -template<typename MatrixType, int QRPreconditioner> -void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return; - - if (QRPreconditioner == FullPivHouseholderQRPreconditioner) - { - eigen_assert(!(this->m_computeThinU || this->m_computeThinV) && - "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " - "Use the ColPivHouseholderQR preconditioner instead."); - } - - m_workMatrix.resize(this->m_diagSize, this->m_diagSize); - - if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this); - if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this); -} - -template<typename MatrixType, int QRPreconditioner> -SVDBase<MatrixType>& -JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) -{ - using std::abs; - allocate(matrix.rows(), matrix.cols(), computationOptions); - - // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, - // only worsening the precision of U and V as we accumulate more rotations - const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); - - // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) - const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min(); - - /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ - - if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix)) - { - m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize); - if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows); - if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize); - if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols); - if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize); - } - - /*** step 2. The main Jacobi SVD iteration. ***/ - - bool finished = false; - while(!finished) - { - finished = true; - - // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix - - for(Index p = 1; p < this->m_diagSize; ++p) - { - for(Index q = 0; q < p; ++q) - { - // if this 2x2 sub-matrix is not diagonal already... - // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't - // keep us iterating forever. Similarly, small denormal numbers are considered zero. - using std::max; - RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)), - abs(m_workMatrix.coeff(q,q)))); - if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold) - { - finished = false; - - // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal - internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q); - JacobiRotation<RealScalar> j_left, j_right; - internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); - - // accumulate resulting Jacobi rotations - m_workMatrix.applyOnTheLeft(p,q,j_left); - if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose()); - - m_workMatrix.applyOnTheRight(p,q,j_right); - if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right); - } - } - } - } - - /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ - - for(Index i = 0; i < this->m_diagSize; ++i) - { - RealScalar a = abs(m_workMatrix.coeff(i,i)); - this->m_singularValues.coeffRef(i) = a; - if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a; - } - - /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ - - this->m_nonzeroSingularValues = this->m_diagSize; - for(Index i = 0; i < this->m_diagSize; i++) - { - Index pos; - RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos); - if(maxRemainingSingularValue == RealScalar(0)) - { - this->m_nonzeroSingularValues = i; - break; - } - if(pos) - { - pos += i; - std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos)); - if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i)); - if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i)); - } - } - - this->m_isInitialized = true; - return *this; -} - -namespace internal { -template<typename _MatrixType, int QRPreconditioner, typename Rhs> -struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> - : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> -{ - typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; - EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) - - template<typename Dest> void evalTo(Dest& dst) const - { - eigen_assert(rhs().rows() == dec().rows()); - - // A = U S V^* - // So A^{-1} = V S^{-1} U^* - - Index diagSize = (std::min)(dec().rows(), dec().cols()); - typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize); - - Index nonzeroSingVals = dec().nonzeroSingularValues(); - invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); - invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); - - dst = dec().matrixV().leftCols(diagSize) - * invertedSingVals.asDiagonal() - * dec().matrixU().leftCols(diagSize).adjoint() - * rhs(); - } -}; -} // end namespace internal - -/** \svd_module - * - * \return the singular value decomposition of \c *this computed by two-sided - * Jacobi transformations. - * - * \sa class JacobiSVD - */ -template<typename Derived> -JacobiSVD<typename MatrixBase<Derived>::PlainObject> -MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const -{ - return JacobiSVD<PlainObject>(*this, computationOptions); -} - -} // end namespace Eigen - -#endif // EIGEN_JACOBISVD_H |