summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2018-07-03 07:37:12 +0200
committerStanislaw Halik <sthalik@misaki.pl>2018-07-03 08:13:09 +0200
commit88534ba623421c956d8ffcda2d27f41d704d15ef (patch)
treefccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/Eigen/src
parent3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff)
update eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src')
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h7
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h257
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h184
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h11
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h2
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/Companion.h50
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h18
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h89
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h8
9 files changed, 337 insertions, 289 deletions
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
index d280886..279fe5c 100644
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -683,4 +683,11 @@ template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
}
+namespace std {
+template <typename T>
+class numeric_limits<Eigen::AutoDiffScalar<T> >
+ : public numeric_limits<typename T::Scalar> {};
+
+} // namespace std
+
#endif // EIGEN_AUTODIFF_SCALAR_H
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
index a5d034d..13a0da1 100644
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
+++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -12,6 +12,11 @@
namespace Eigen
{
+ /*template<typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+ struct ei_eulerangles_assign_impl;*/
+
/** \class EulerAngles
*
* \ingroup EulerAngles_Module
@@ -31,7 +36,7 @@ namespace Eigen
* ### Rotation representation and conversions ###
*
* It has been proved(see Wikipedia link below) that every rotation can be represented
- * by Euler angles, but there is no single representation (e.g. unlike rotation matrices).
+ * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
* Therefore, you can convert from Eigen rotation and to them
* (including rotation matrices, which is not called "rotations" by Eigen design).
*
@@ -50,27 +55,33 @@ namespace Eigen
* Additionally, some axes related computation is done in compile time.
*
* #### Euler angles ranges in conversions ####
- * Rotations representation as EulerAngles are not single (unlike matrices),
- * and even have infinite EulerAngles representations.<BR>
- * For example, add or subtract 2*PI from either angle of EulerAngles
- * and you'll get the same rotation.
- * This is the general reason for infinite representation,
- * but it's not the only general reason for not having a single representation.
*
- * When converting rotation to EulerAngles, this class convert it to specific ranges
- * When converting some rotation to EulerAngles, the rules for ranges are as follow:
- * - If the rotation we converting from is an EulerAngles
- * (even when it represented as RotationBase explicitly), angles ranges are __undefined__.
- * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
- * As for Beta angle:
- * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
- * - otherwise:
- * - If the beta axis is positive, the beta angle will be in the range [0, PI]
- * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ * When converting some rotation to Euler angles, there are some ways you can guarantee
+ * the Euler angles ranges.
*
+ * #### implicit ranges ####
+ * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
+ * unless you convert from some other Euler angles.
+ * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
* \sa EulerAngles(const MatrixBase<Derived>&)
* \sa EulerAngles(const RotationBase<Derived, 3>&)
*
+ * #### explicit ranges ####
+ * When using explicit ranges, all angles are guarantee to be in the range you choose.
+ * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
+ * - _true_ - force the range between [0, +2*PI]
+ * - _false_ - force the range between [-PI, +PI]
+ *
+ * ##### compile time ranges #####
+ * This is when you have compile time ranges and you prefer to
+ * use template parameter. (e.g. for performance)
+ * \sa FromRotation()
+ *
+ * ##### run-time time ranges #####
+ * Run-time ranges are also supported.
+ * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
+ *
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerAngles exist for float and double scalar,
@@ -92,7 +103,7 @@ namespace Eigen
*
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
*
- * \tparam _Scalar the scalar type, i.e. the type of the angles.
+ * \tparam _Scalar the scalar type, i.e., the type of the angles.
*
* \tparam _System the EulerSystem to use, which represents the axes of rotation.
*/
@@ -100,11 +111,8 @@ namespace Eigen
class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
{
public:
- typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base;
-
/** the scalar type of the angles */
typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
/** the EulerSystem to use, which represents the axes of rotation. */
typedef _System System;
@@ -138,56 +146,67 @@ namespace Eigen
public:
/** Default constructor without initialization. */
EulerAngles() {}
- /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */
+ /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
m_angles(alpha, beta, gamma) {}
- // TODO: Test this constructor
- /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */
- explicit EulerAngles(const Scalar* data) : m_angles(data) {}
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
+ *
+ * \note All angles will be in the range [-PI, PI].
+ */
+ template<typename Derived>
+ EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
- /** Constructs and initializes an EulerAngles from either:
- * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
- * - a 3D vector expression representing Euler angles.
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
*
- * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR>
- * Alpha and gamma angles will be in the range [-PI, PI].<BR>
- * As for Beta angle:
- * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
- * - otherwise:
- * - If the beta axis is positive, the beta angle will be in the range [0, PI]
- * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
- */
+ * \param m The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
template<typename Derived>
- explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; }
+ EulerAngles(
+ const MatrixBase<Derived>& m,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
/** Constructs and initialize Euler angles from a rotation \p rot.
*
- * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly),
- * angles ranges are __undefined__.
- * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
- * As for Beta angle:
- * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
- * - otherwise:
- * - If the beta axis is positive, the beta angle will be in the range [0, PI]
- * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
+ * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
+ * (Use other functions here for enforcing range if this effect is desired)
*/
template<typename Derived>
- EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); }
+ EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
- /*EulerAngles(const QuaternionType& q)
- {
- // TODO: Implement it in a faster way for quaternions
- // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
- // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
- // Currently we compute all matrix cells from quaternion.
-
- // Special case only for ZYX
- //Scalar y2 = q.y() * q.y();
- //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
- //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
- //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
- }*/
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range.
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<typename Derived>
+ EulerAngles(
+ const RotationBase<Derived, 3>& rot,
+ bool positiveRangeAlpha,
+ bool positiveRangeBeta,
+ bool positiveRangeGamma) {
+
+ System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
+ }
/** \returns The angle values stored in a vector (alpha, beta, gamma). */
const Vector3& angles() const { return m_angles; }
@@ -227,48 +246,90 @@ namespace Eigen
return inverse();
}
- /** Set \c *this from either:
- * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
- * - a 3D vector expression representing Euler angles.
+ /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
+ * with options to choose for each angle the requested range (__only in compile time__).
*
- * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about
- * angles ranges output.
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param m The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ */
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const MatrixBase<Derived>& m)
+ {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+ EulerAngles e;
+ System::template CalcEulerAngles<
+ PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
+ return e;
+ }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot,
+ * with options to choose for each angle the requested range (__only in compile time__).
+ *
+ * If positive range is true, then the specified angle will be in the range [0, +2*PI].
+ * Otherwise, the specified angle will be in the range [-PI, +PI].
+ *
+ * \param rot The 3x3 rotation matrix to convert
+ * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
*/
- template<class Derived>
- EulerAngles& operator=(const MatrixBase<Derived>& other)
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Derived>
+ static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
+ {
+ return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
+ }
+
+ /*EulerAngles& fromQuaternion(const QuaternionType& q)
{
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
+
+ /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
+ template<typename Derived>
+ EulerAngles& operator=(const MatrixBase<Derived>& m) {
+ EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
- internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived());
+ System::CalcEulerAngles(*this, m);
return *this;
}
// TODO: Assign and construct from another EulerAngles (with different system)
- /** Set \c *this from a rotation.
- *
- * See EulerAngles(const RotationBase<Derived, 3>&) for more information about
- * angles ranges output.
- */
+ /** Set \c *this from a rotation. */
template<typename Derived>
EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
System::CalcEulerAngles(*this, rot.toRotationMatrix());
return *this;
}
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const EulerAngles& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
- { return angles().isApprox(other.angles(), prec); }
+ // TODO: Support isApprox function
/** \returns an equivalent 3x3 rotation matrix. */
Matrix3 toRotationMatrix() const
{
- // TODO: Calc it faster
return static_cast<QuaternionType>(*this).toRotationMatrix();
}
@@ -286,15 +347,6 @@ namespace Eigen
s << eulerAngles.angles().transpose();
return s;
}
-
- /** \returns \c *this with scalar type casted to \a NewScalarType */
- template <typename NewScalarType>
- EulerAngles<NewScalarType, System> cast() const
- {
- EulerAngles<NewScalarType, System> e;
- e.angles() = angles().template cast<NewScalarType>();
- return e;
- }
};
#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
@@ -327,29 +379,8 @@ EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
{
typedef _Scalar Scalar;
};
-
- // set from a rotation matrix
- template<class System, class Other>
- struct eulerangles_assign_impl<System,Other,3,3>
- {
- typedef typename Other::Scalar Scalar;
- static void run(EulerAngles<Scalar, System>& e, const Other& m)
- {
- System::CalcEulerAngles(e, m);
- }
- };
-
- // set from a vector of Euler angles
- template<class System, class Other>
- struct eulerangles_assign_impl<System,Other,4,1>
- {
- typedef typename Other::Scalar Scalar;
- static void run(EulerAngles<Scalar, System>& e, const Other& vec)
- {
- e.angles() = vec;
- }
- };
}
+
}
#endif // EIGEN_EULERANGLESCLASS_H
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
index 28f52da..98f9f64 100644
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -18,7 +18,7 @@ namespace Eigen
namespace internal
{
- // TODO: Add this trait to the Eigen internal API?
+ // TODO: Check if already exists on the rest API
template <int Num, bool IsPositive = (Num > 0)>
struct Abs
{
@@ -36,12 +36,6 @@ namespace Eigen
{
enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
};
-
- template<typename System,
- typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
- struct eulerangles_assign_impl;
}
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
@@ -75,7 +69,7 @@ namespace Eigen
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
+ * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
@@ -86,7 +80,7 @@ namespace Eigen
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
- * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
+ * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
@@ -96,7 +90,7 @@ namespace Eigen
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
- * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
@@ -118,9 +112,9 @@ namespace Eigen
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
- * \tparam _BetaAxis the second fixed EulerAxis
+ * \tparam _AlphaAxis the second fixed EulerAxis
*
- * \tparam _GammaAxis the third fixed EulerAxis
+ * \tparam _AlphaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
@@ -144,16 +138,14 @@ namespace Eigen
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
-
- // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
- // by Z, or Z is followed by X; otherwise it is odd.
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
+
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
};
private:
@@ -188,70 +180,71 @@ namespace Eigen
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sqrt;
+ using std::sin;
+ using std::cos;
typedef typename Derived::Scalar Scalar;
-
- const Scalar plusMinus = IsEven? 1 : -1;
- const Scalar minusPlus = IsOdd? 1 : -1;
-
- const Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2);
- res[1] = atan2(plusMinus * mat(I,K), Rsum);
-
- // There is a singularity when cos(beta) == 0
- if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
- res[0] = atan2(minusPlus * mat(J, K), mat(K, K));
- res[2] = atan2(minusPlus * mat(I, J), mat(I, I));
- }
- else if(plusMinus * mat(I, K) > 0) {// cos(beta) == 0 and sin(beta) == 1
- Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma
- Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma)
- Scalar alphaPlusMinusGamma = atan2(spos, cpos);
- res[0] = alphaPlusMinusGamma;
- res[2] = 0;
- }
- else {// cos(beta) == 0 and sin(beta) == -1
- Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma)
- Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma)
- Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
- res[0] = alphaMinusPlusBeta;
- res[2] = 0;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,K), mat(K,K));
+ Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ res[1] = atan2(-mat(I,K), -c2);
}
+ else
+ res[1] = atan2(-mat(I,K), c2);
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
}
template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
- const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sqrt;
+ using std::sin;
+ using std::cos;
typedef typename Derived::Scalar Scalar;
-
- const Scalar plusMinus = IsEven? 1 : -1;
- const Scalar minusPlus = IsOdd? 1 : -1;
-
- const Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2);
-
- res[1] = atan2(Rsum, mat(I, I));
-
- // There is a singularity when sin(beta) == 0
- if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
- res[0] = atan2(mat(J, I), minusPlus * mat(K, I));
- res[2] = atan2(mat(I, J), plusMinus * mat(I, K));
- }
- else if(mat(I, I) > 0) {// sin(beta) == 0 and cos(beta) == 1
- Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma)
- Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma)
- res[0] = atan2(spos, cpos);
- res[2] = 0;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,I), mat(K,I));
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
+ {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = -atan2(s2, mat(I,I));
}
- else {// sin(beta) == 0 and cos(beta) == -1
- Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma)
- Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma)
- res[0] = atan2(sneg, cneg);
- res[2] = 0;
+ else
+ {
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = atan2(s2, mat(I,I));
}
+
+ // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+ // we can compute their respective rotation, and apply its inverse to M. Since the result must
+ // be a rotation around x, we have:
+ //
+ // c2 s1.s2 c1.s2 1 0 0
+ // 0 c1 -s1 * M = 0 c3 s3
+ // -s2 s1.c2 c1.c2 0 -s3 c3
+ //
+ // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
+
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
}
template<typename Scalar>
@@ -259,28 +252,55 @@ namespace Eigen
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
+ CalcEulerAngles(res, mat, false, false, false);
+ }
+
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+ {
+ CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
+ }
+
+ template<typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma)
+ {
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
- if (IsAlphaOpposite)
+ if (IsAlphaOpposite == IsOdd)
res.alpha() = -res.alpha();
- if (IsBetaOpposite)
+ if (IsBetaOpposite == IsOdd)
res.beta() = -res.beta();
- if (IsGammaOpposite)
+ if (IsGammaOpposite == IsOdd)
res.gamma() = -res.gamma();
+
+ // Saturate results to the requested range
+ if (PositiveRangeAlpha && (res.alpha() < 0))
+ res.alpha() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeBeta && (res.beta() < 0))
+ res.beta() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeGamma && (res.gamma() < 0))
+ res.gamma() += Scalar(2 * EIGEN_PI);
}
template <typename _Scalar, class _System>
friend class Eigen::EulerAngles;
-
- template<typename System,
- typename Other,
- int OtherRows,
- int OtherCols>
- friend struct internal::eulerangles_assign_impl;
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
index db2449d..3f7d777 100644
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -398,8 +398,8 @@ struct matrix_function_compute
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 0>
{
- template <typename AtomicType, typename ResultType>
- static void run(const MatrixType& A, AtomicType& atomic, ResultType &result)
+ template <typename MatA, typename AtomicType, typename ResultType>
+ static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
@@ -422,11 +422,10 @@ struct matrix_function_compute<MatrixType, 0>
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 1>
{
- template <typename AtomicType, typename ResultType>
- static void run(const MatrixType& A, AtomicType& atomic, ResultType &result)
+ template <typename MatA, typename AtomicType, typename ResultType>
+ static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
- typedef typename MatrixType::Index Index;
// compute Schur decomposition of A
const ComplexSchur<MatrixType> schurOfA(A);
@@ -514,7 +513,7 @@ template<typename Derived> class MatrixFunctionReturnValue
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
- internal::matrix_function_compute<NestedEvalTypeClean>::run(m_A, atomic, result);
+ internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
index 1acfbed..ff8f6e7 100644
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -339,7 +339,7 @@ public:
typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
AtomicType atomic;
- internal::matrix_function_compute<DerivedEvalTypeClean>::run(m_A, atomic, result);
+ internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
diff --git a/eigen/unsupported/Eigen/src/Polynomials/Companion.h b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
index e0af6eb..b515c29 100644
--- a/eigen/unsupported/Eigen/src/Polynomials/Companion.h
+++ b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
@@ -75,7 +75,7 @@ class companion
void setPolynomial( const VectorType& poly )
{
const Index deg = poly.size()-1;
- m_monic = Scalar(-1)/poly[deg] * poly.head(deg);
+ m_monic = -1/poly[deg] * poly.head(deg);
//m_bl_diag.setIdentity( deg-1 );
m_bl_diag.setOnes(deg-1);
}
@@ -107,8 +107,8 @@ class companion
* colB and rowB are repectively the multipliers for
* the column and the row in order to balance them.
* */
- bool balanced( RealScalar colNorm, RealScalar rowNorm,
- bool& isBalanced, RealScalar& colB, RealScalar& rowB );
+ bool balanced( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB );
/** Helper function for the balancing algorithm.
* \returns true if the row and the column, having colNorm and rowNorm
@@ -116,8 +116,8 @@ class companion
* colB and rowB are repectively the multipliers for
* the column and the row in order to balance them.
* */
- bool balancedR( RealScalar colNorm, RealScalar rowNorm,
- bool& isBalanced, RealScalar& colB, RealScalar& rowB );
+ bool balancedR( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB );
public:
/**
@@ -139,10 +139,10 @@ class companion
template< typename _Scalar, int _Deg >
inline
-bool companion<_Scalar,_Deg>::balanced( RealScalar colNorm, RealScalar rowNorm,
- bool& isBalanced, RealScalar& colB, RealScalar& rowB )
+bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB )
{
- if( RealScalar(0) == colNorm || RealScalar(0) == rowNorm ){ return true; }
+ if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
else
{
//To find the balancing coefficients, if the radix is 2,
@@ -150,29 +150,29 @@ bool companion<_Scalar,_Deg>::balanced( RealScalar colNorm, RealScalar rowNorm,
// \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
// then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
// and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
- rowB = rowNorm / radix<RealScalar>();
- colB = RealScalar(1);
- const RealScalar s = colNorm + rowNorm;
+ rowB = rowNorm / radix<Scalar>();
+ colB = Scalar(1);
+ const Scalar s = colNorm + rowNorm;
while (colNorm < rowB)
{
- colB *= radix<RealScalar>();
- colNorm *= radix2<RealScalar>();
+ colB *= radix<Scalar>();
+ colNorm *= radix2<Scalar>();
}
- rowB = rowNorm * radix<RealScalar>();
+ rowB = rowNorm * radix<Scalar>();
while (colNorm >= rowB)
{
- colB /= radix<RealScalar>();
- colNorm /= radix2<RealScalar>();
+ colB /= radix<Scalar>();
+ colNorm /= radix2<Scalar>();
}
//This line is used to avoid insubstantial balancing
- if ((rowNorm + colNorm) < RealScalar(0.95) * s * colB)
+ if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
{
isBalanced = false;
- rowB = RealScalar(1) / colB;
+ rowB = Scalar(1) / colB;
return false;
}
else{
@@ -182,21 +182,21 @@ bool companion<_Scalar,_Deg>::balanced( RealScalar colNorm, RealScalar rowNorm,
template< typename _Scalar, int _Deg >
inline
-bool companion<_Scalar,_Deg>::balancedR( RealScalar colNorm, RealScalar rowNorm,
- bool& isBalanced, RealScalar& colB, RealScalar& rowB )
+bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB )
{
- if( RealScalar(0) == colNorm || RealScalar(0) == rowNorm ){ return true; }
+ if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
else
{
/**
* Set the norm of the column and the row to the geometric mean
* of the row and column norm
*/
- const RealScalar q = colNorm/rowNorm;
+ const _Scalar q = colNorm/rowNorm;
if( !isApprox( q, _Scalar(1) ) )
{
rowB = sqrt( colNorm/rowNorm );
- colB = RealScalar(1)/rowB;
+ colB = Scalar(1)/rowB;
isBalanced = false;
return false;
@@ -219,8 +219,8 @@ void companion<_Scalar,_Deg>::balance()
while( !hasConverged )
{
hasConverged = true;
- RealScalar colNorm,rowNorm;
- RealScalar colB,rowB;
+ Scalar colNorm,rowNorm;
+ Scalar colB,rowB;
//First row, first column excluding the diagonal
//==============================================
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
index 7885942..03198ec 100644
--- a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
+++ b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
@@ -99,7 +99,7 @@ class PolynomialSolverBase
*/
inline const RootType& greatestRoot() const
{
- std::greater<RealScalar> greater;
+ std::greater<Scalar> greater;
return selectComplexRoot_withRespectToNorm( greater );
}
@@ -108,7 +108,7 @@ class PolynomialSolverBase
*/
inline const RootType& smallestRoot() const
{
- std::less<RealScalar> less;
+ std::less<Scalar> less;
return selectComplexRoot_withRespectToNorm( less );
}
@@ -213,7 +213,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::greater<RealScalar> greater;
+ std::greater<Scalar> greater;
return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
@@ -236,7 +236,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::less<RealScalar> less;
+ std::less<Scalar> less;
return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
}
@@ -259,7 +259,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::greater<RealScalar> greater;
+ std::greater<Scalar> greater;
return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
@@ -282,7 +282,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::less<RealScalar> less;
+ std::less<Scalar> less;
return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
}
@@ -327,7 +327,7 @@ class PolynomialSolverBase
* However, almost always, correct accuracy is reached even in these cases for 64bit
* (double) floating types and small polynomial degree (<20).
*/
-template<typename _Scalar, int _Deg>
+template< typename _Scalar, int _Deg >
class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
{
public:
@@ -337,9 +337,7 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- ComplexEigenSolver<CompanionMatrixType>,
- EigenSolver<CompanionMatrixType> >::type EigenSolverType;
+ typedef EigenSolver<CompanionMatrixType> EigenSolverType;
public:
/** Computes the complex roots of a new polynomial. */
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
index fc70a24..cdc14f8 100644
--- a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
+++ b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
@@ -12,38 +12,38 @@
#define EIGEN_SPARSE_MARKET_IO_H
#include <iostream>
-#include <vector>
namespace Eigen {
namespace internal
{
- template <typename Scalar, typename StorageIndex>
- inline void GetMarketLine (const char* line, StorageIndex& i, StorageIndex& j, Scalar& value)
+ template <typename Scalar>
+ inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, Scalar& value)
{
- std::stringstream sline(line);
- sline >> i >> j >> value;
+ line >> i >> j >> value;
+ i--;
+ j--;
+ if(i>=0 && j>=0 && i<M && j<N)
+ {
+ return true;
+ }
+ else
+ return false;
}
-
- template<> inline void GetMarketLine (const char* line, int& i, int& j, float& value)
- { std::sscanf(line, "%d %d %g", &i, &j, &value); }
-
- template<> inline void GetMarketLine (const char* line, int& i, int& j, double& value)
- { std::sscanf(line, "%d %d %lg", &i, &j, &value); }
-
- template<> inline void GetMarketLine (const char* line, int& i, int& j, std::complex<float>& value)
- { std::sscanf(line, "%d %d %g %g", &i, &j, &numext::real_ref(value), &numext::imag_ref(value)); }
-
- template<> inline void GetMarketLine (const char* line, int& i, int& j, std::complex<double>& value)
- { std::sscanf(line, "%d %d %lg %lg", &i, &j, &numext::real_ref(value), &numext::imag_ref(value)); }
-
- template <typename Scalar, typename StorageIndex>
- inline void GetMarketLine (const char* line, StorageIndex& i, StorageIndex& j, std::complex<Scalar>& value)
+ template <typename Scalar>
+ inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, std::complex<Scalar>& value)
{
- std::stringstream sline(line);
Scalar valR, valI;
- sline >> i >> j >> valR >> valI;
- value = std::complex<Scalar>(valR,valI);
+ line >> i >> j >> valR >> valI;
+ i--;
+ j--;
+ if(i>=0 && j>=0 && i<M && j<N)
+ {
+ value = std::complex<Scalar>(valR, valI);
+ return true;
+ }
+ else
+ return false;
}
template <typename RealScalar>
@@ -81,13 +81,13 @@ namespace internal
}
}
- template<typename Scalar, typename StorageIndex>
- inline void PutMatrixElt(Scalar value, StorageIndex row, StorageIndex col, std::ofstream& out)
+ template<typename Scalar>
+ inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
{
out << row << " "<< col << " " << value << "\n";
}
- template<typename Scalar, typename StorageIndex>
- inline void PutMatrixElt(std::complex<Scalar> value, StorageIndex row, StorageIndex col, std::ofstream& out)
+ template<typename Scalar>
+ inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
{
out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
}
@@ -133,20 +133,17 @@ template<typename SparseMatrixType>
bool loadMarket(SparseMatrixType& mat, const std::string& filename)
{
typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
+ typedef typename SparseMatrixType::Index Index;
std::ifstream input(filename.c_str(),std::ios::in);
if(!input)
return false;
-
- char rdbuffer[4096];
- input.rdbuf()->pubsetbuf(rdbuffer, 4096);
const int maxBuffersize = 2048;
char buffer[maxBuffersize];
bool readsizes = false;
- typedef Triplet<Scalar,StorageIndex> T;
+ typedef Triplet<Scalar,Index> T;
std::vector<T> elements;
Index M(-1), N(-1), NNZ(-1);
@@ -157,36 +154,33 @@ bool loadMarket(SparseMatrixType& mat, const std::string& filename)
//NOTE An appropriate test should be done on the header to get the symmetry
if(buffer[0]=='%')
continue;
-
+
+ std::stringstream line(buffer);
+
if(!readsizes)
{
- std::stringstream line(buffer);
line >> M >> N >> NNZ;
if(M > 0 && N > 0 && NNZ > 0)
{
readsizes = true;
+ //std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
mat.resize(M,N);
mat.reserve(NNZ);
}
}
else
{
- StorageIndex i(-1), j(-1);
+ Index i(-1), j(-1);
Scalar value;
- internal::GetMarketLine(buffer, i, j, value);
-
- i--;
- j--;
- if(i>=0 && j>=0 && i<M && j<N)
+ if( internal::GetMarketLine(line, M, N, i, j, value) )
{
- ++count;
+ ++ count;
elements.push_back(T(i,j,value));
}
- else
+ else
std::cerr << "Invalid read: " << i << "," << j << "\n";
}
}
-
mat.setFromTriplets(elements.begin(), elements.end());
if(count!=NNZ)
std::cerr << count << "!=" << NNZ << "\n";
@@ -231,13 +225,12 @@ template<typename SparseMatrixType>
bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
{
typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::RealScalar RealScalar;
std::ofstream out(filename.c_str(),std::ios::out);
if(!out)
return false;
out.flags(std::ios_base::scientific);
- out.precision(std::numeric_limits<RealScalar>::digits10 + 2);
+ out.precision(64);
std::string header;
internal::putMarketHeader<Scalar>(header, sym);
out << header << std::endl;
@@ -248,6 +241,7 @@ bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sy
{
++ count;
internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
+ // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
}
out.close();
return true;
@@ -256,14 +250,13 @@ bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sy
template<typename VectorType>
bool saveMarketVector (const VectorType& vec, const std::string& filename)
{
- typedef typename VectorType::Scalar Scalar;
- typedef typename VectorType::RealScalar RealScalar;
+ typedef typename VectorType::Scalar Scalar;
std::ofstream out(filename.c_str(),std::ios::out);
if(!out)
return false;
out.flags(std::ios_base::scientific);
- out.precision(std::numeric_limits<RealScalar>::digits10 + 2);
+ out.precision(64);
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
out << "%%MatrixMarket matrix array complex general\n";
else
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
index 369ad97..f524d71 100644
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
+++ b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
@@ -122,8 +122,8 @@ struct lgamma_impl<float> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE float run(float x) {
#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int dummy;
- return ::lgammaf_r(x, &dummy);
+ int signgam;
+ return ::lgammaf_r(x, &signgam);
#else
return ::lgammaf(x);
#endif
@@ -135,8 +135,8 @@ struct lgamma_impl<double> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE double run(double x) {
#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int dummy;
- return ::lgamma_r(x, &dummy);
+ int signgam;
+ return ::lgamma_r(x, &signgam);
#else
return ::lgamma(x);
#endif