diff options
| author | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 07:37:12 +0200 |
|---|---|---|
| committer | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 08:13:09 +0200 |
| commit | 88534ba623421c956d8ffcda2d27f41d704d15ef (patch) | |
| tree | fccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp | |
| parent | 3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff) | |
update eigen
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp')
| -rw-r--r-- | eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp | 622 |
1 files changed, 0 insertions, 622 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp deleted file mode 100644 index 39e4f0a..0000000 --- a/eigen/unsupported/test/cxx11_tensor_chipping_sycl.cpp +++ /dev/null @@ -1,622 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 -// Mehdi Goli Codeplay Software Ltd. -// Ralph Potter Codeplay Software Ltd. -// Luke Iwanski Codeplay Software Ltd. -// Contact: <eigen@codeplay.com> -// Benoit Steiner <benoit.steiner.goog@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -#define EIGEN_TEST_NO_LONGDOUBLE -#define EIGEN_TEST_NO_COMPLEX -#define EIGEN_TEST_FUNC cxx11_tensor_chipping_sycl -#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t -#define EIGEN_USE_SYCL - -#include "main.h" - -#include <Eigen/CXX11/Tensor> - -using Eigen::Tensor; - -template <typename DataType, int DataLayout, typename IndexType> -static void test_static_chip_sycl(const Eigen::SyclDevice& sycl_device) -{ - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - IndexType sizeDim5 = 11; - - array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - - Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange); - Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange); - - tensor.setRandom(); - - const size_t tensorBuffSize =tensor.size()*sizeof(DataType); - const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); - DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); - - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); - gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(1l); - sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); - - VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); - VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); - VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim2; ++i) { - for (IndexType j = 0; j < sizeDim3; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l)); - } - } - } - } - - array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange); - const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType); - DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); - - gpu_chip2.device(sycl_device)=gpu_tensor.template chip<1l>(1l); - sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); - - VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); - VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim3; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l)); - } - } - } - } - - array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange); - const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType); - DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange); - - gpu_chip3.device(sycl_device)=gpu_tensor.template chip<2l>(2l); - sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); - - VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l)); - } - } - } - } - - array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange); - const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType); - DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange); - - gpu_chip4.device(sycl_device)=gpu_tensor.template chip<3l>(5l); - sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); - - VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); - VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim3; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l)); - } - } - } - } - - - array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; - Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange); - const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType); - DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange); - - gpu_chip5.device(sycl_device)=gpu_tensor.template chip<4l>(7l); - sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); - - VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); - VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim3; ++k) { - for (IndexType l = 0; l < sizeDim4; ++l) { - VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l)); - } - } - } - } - - sycl_device.deallocate(gpu_data_tensor); - sycl_device.deallocate(gpu_data_chip1); - sycl_device.deallocate(gpu_data_chip2); - sycl_device.deallocate(gpu_data_chip3); - sycl_device.deallocate(gpu_data_chip4); - sycl_device.deallocate(gpu_data_chip5); -} - -template <typename DataType, int DataLayout, typename IndexType> -static void test_dynamic_chip_sycl(const Eigen::SyclDevice& sycl_device) -{ - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - IndexType sizeDim5 = 11; - - array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - - Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange); - Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange); - - tensor.setRandom(); - - const size_t tensorBuffSize =tensor.size()*sizeof(DataType); - const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); - DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); - - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); - gpu_chip1.device(sycl_device)=gpu_tensor.chip(1l,0l); - sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); - - VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); - VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); - VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim2; ++i) { - for (IndexType j = 0; j < sizeDim3; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l)); - } - } - } - } - - array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange); - const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType); - DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); - - gpu_chip2.device(sycl_device)=gpu_tensor.chip(1l,1l); - sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); - - VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); - VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim3; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l)); - } - } - } - } - - array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange); - const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType); - DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange); - - gpu_chip3.device(sycl_device)=gpu_tensor.chip(2l,2l); - sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); - - VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); - VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim4; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l)); - } - } - } - } - - array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange); - const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType); - DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange); - - gpu_chip4.device(sycl_device)=gpu_tensor.chip(5l,3l); - sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); - - VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); - VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim3; ++k) { - for (IndexType l = 0; l < sizeDim5; ++l) { - VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l)); - } - } - } - } - - - array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; - Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange); - const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType); - DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange); - - gpu_chip5.device(sycl_device)=gpu_tensor.chip(7l,4l); - sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); - - VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); - VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); - VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); - VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); - - for (IndexType i = 0; i < sizeDim1; ++i) { - for (IndexType j = 0; j < sizeDim2; ++j) { - for (IndexType k = 0; k < sizeDim3; ++k) { - for (IndexType l = 0; l < sizeDim4; ++l) { - VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l)); - } - } - } - } - sycl_device.deallocate(gpu_data_tensor); - sycl_device.deallocate(gpu_data_chip1); - sycl_device.deallocate(gpu_data_chip2); - sycl_device.deallocate(gpu_data_chip3); - sycl_device.deallocate(gpu_data_chip4); - sycl_device.deallocate(gpu_data_chip5); -} - -template <typename DataType, int DataLayout, typename IndexType> -static void test_chip_in_expr(const Eigen::SyclDevice& sycl_device) { - - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - IndexType sizeDim5 = 11; - - array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - - Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange); - - Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange); - Tensor<DataType, 4, DataLayout,IndexType> tensor1(chip1TensorRange); - tensor.setRandom(); - tensor1.setRandom(); - - const size_t tensorBuffSize =tensor.size()*sizeof(DataType); - const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); - DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); - DataType* gpu_data_tensor1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize)); - - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor1(gpu_data_tensor1, chip1TensorRange); - - - sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); - sycl_device.memcpyHostToDevice(gpu_data_tensor1, tensor1.data(), chip1TensorBuffSize); - gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(0l) + gpu_tensor1; - sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); - - for (int i = 0; i < sizeDim2; ++i) { - for (int j = 0; j < sizeDim3; ++j) { - for (int k = 0; k < sizeDim4; ++k) { - for (int l = 0; l < sizeDim5; ++l) { - float expected = tensor(0l,i,j,k,l) + tensor1(i,j,k,l); - VERIFY_IS_EQUAL(chip1(i,j,k,l), expected); - } - } - } - } - - array<IndexType, 3> chip2TensorRange = {{sizeDim2, sizeDim4, sizeDim5}}; - Tensor<DataType, 3, DataLayout,IndexType> tensor2(chip2TensorRange); - Tensor<DataType, 3, DataLayout,IndexType> chip2(chip2TensorRange); - tensor2.setRandom(); - const size_t chip2TensorBuffSize =tensor2.size()*sizeof(DataType); - DataType* gpu_data_tensor2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); - DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize)); - TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_tensor2(gpu_data_tensor2, chip2TensorRange); - TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_tensor2, tensor2.data(), chip2TensorBuffSize); - gpu_chip2.device(sycl_device)=gpu_tensor.template chip<0l>(0l).template chip<1l>(2l) + gpu_tensor2; - sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); - - for (int i = 0; i < sizeDim2; ++i) { - for (int j = 0; j < sizeDim4; ++j) { - for (int k = 0; k < sizeDim5; ++k) { - float expected = tensor(0l,i,2l,j,k) + tensor2(i,j,k); - VERIFY_IS_EQUAL(chip2(i,j,k), expected); - } - } - } - sycl_device.deallocate(gpu_data_tensor); - sycl_device.deallocate(gpu_data_tensor1); - sycl_device.deallocate(gpu_data_chip1); - sycl_device.deallocate(gpu_data_tensor2); - sycl_device.deallocate(gpu_data_chip2); -} - -template <typename DataType, int DataLayout, typename IndexType> -static void test_chip_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device) -{ - - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - IndexType sizeDim5 = 11; - - array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - array<IndexType, 4> input2TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; - - Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange); - Tensor<DataType, 5, DataLayout,IndexType> input1(tensorRange); - Tensor<DataType, 4, DataLayout,IndexType> input2(input2TensorRange); - input1.setRandom(); - input2.setRandom(); - - - const size_t tensorBuffSize =tensor.size()*sizeof(DataType); - const size_t input2TensorBuffSize =input2.size()*sizeof(DataType); - DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - DataType* gpu_data_input1 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - DataType* gpu_data_input2 = static_cast<DataType*>(sycl_device.allocate(input2TensorBuffSize)); - - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input1(gpu_data_input1, tensorRange); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input2(gpu_data_input2, input2TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input1, input1.data(), tensorBuffSize); - gpu_tensor.device(sycl_device)=gpu_input1; - sycl_device.memcpyHostToDevice(gpu_data_input2, input2.data(), input2TensorBuffSize); - gpu_tensor.template chip<0l>(1l).device(sycl_device)=gpu_input2; - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (i != 1) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input2(j,k,l,m)); - } - } - } - } - } - } - - gpu_tensor.device(sycl_device)=gpu_input1; - array<IndexType, 4> input3TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> input3(input3TensorRange); - input3.setRandom(); - - const size_t input3TensorBuffSize =input3.size()*sizeof(DataType); - DataType* gpu_data_input3 = static_cast<DataType*>(sycl_device.allocate(input3TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input3(gpu_data_input3, input3TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input3, input3.data(), input3TensorBuffSize); - gpu_tensor.template chip<1l>(1l).device(sycl_device)=gpu_input3; - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k <sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (j != 1) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input3(i,k,l,m)); - } - } - } - } - } - } - - gpu_tensor.device(sycl_device)=gpu_input1; - array<IndexType, 4> input4TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> input4(input4TensorRange); - input4.setRandom(); - - const size_t input4TensorBuffSize =input4.size()*sizeof(DataType); - DataType* gpu_data_input4 = static_cast<DataType*>(sycl_device.allocate(input4TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input4(gpu_data_input4, input4TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input4, input4.data(), input4TensorBuffSize); - gpu_tensor.template chip<2l>(3l).device(sycl_device)=gpu_input4; - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k <sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (k != 3) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input4(i,j,l,m)); - } - } - } - } - } - } - - gpu_tensor.device(sycl_device)=gpu_input1; - array<IndexType, 4> input5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; - Tensor<DataType, 4, DataLayout,IndexType> input5(input5TensorRange); - input5.setRandom(); - - const size_t input5TensorBuffSize =input5.size()*sizeof(DataType); - DataType* gpu_data_input5 = static_cast<DataType*>(sycl_device.allocate(input5TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input5(gpu_data_input5, input5TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input5, input5.data(), input5TensorBuffSize); - gpu_tensor.template chip<3l>(4l).device(sycl_device)=gpu_input5; - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k <sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (l != 4) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input5(i,j,k,m)); - } - } - } - } - } - } - gpu_tensor.device(sycl_device)=gpu_input1; - array<IndexType, 4> input6TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; - Tensor<DataType, 4, DataLayout,IndexType> input6(input6TensorRange); - input6.setRandom(); - - const size_t input6TensorBuffSize =input6.size()*sizeof(DataType); - DataType* gpu_data_input6 = static_cast<DataType*>(sycl_device.allocate(input6TensorBuffSize)); - TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input6(gpu_data_input6, input6TensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input6, input6.data(), input6TensorBuffSize); - gpu_tensor.template chip<4l>(5l).device(sycl_device)=gpu_input6; - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k <sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (m != 5) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input6(i,j,k,l)); - } - } - } - } - } - } - - - gpu_tensor.device(sycl_device)=gpu_input1; - Tensor<DataType, 5, DataLayout,IndexType> input7(tensorRange); - input7.setRandom(); - - DataType* gpu_data_input7 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); - TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input7(gpu_data_input7, tensorRange); - - sycl_device.memcpyHostToDevice(gpu_data_input7, input7.data(), tensorBuffSize); - gpu_tensor.chip(0l,0l).device(sycl_device)=gpu_input7.chip(0l,0l); - sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); - - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k <sizeDim3; ++k) { - for (int l = 0; l < sizeDim4; ++l) { - for (int m = 0; m < sizeDim5; ++m) { - if (i != 0) { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); - } else { - VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input7(i,j,k,l,m)); - } - } - } - } - } - } - sycl_device.deallocate(gpu_data_tensor); - sycl_device.deallocate(gpu_data_input1); - sycl_device.deallocate(gpu_data_input2); - sycl_device.deallocate(gpu_data_input3); - sycl_device.deallocate(gpu_data_input4); - sycl_device.deallocate(gpu_data_input5); - sycl_device.deallocate(gpu_data_input6); - sycl_device.deallocate(gpu_data_input7); - -} - -template<typename DataType, typename dev_Selector> void sycl_chipping_test_per_device(dev_Selector s){ - QueueInterface queueInterface(s); - auto sycl_device = Eigen::SyclDevice(&queueInterface); - test_static_chip_sycl<DataType, RowMajor, int64_t>(sycl_device); - test_static_chip_sycl<DataType, ColMajor, int64_t>(sycl_device); - test_dynamic_chip_sycl<DataType, RowMajor, int64_t>(sycl_device); - test_dynamic_chip_sycl<DataType, ColMajor, int64_t>(sycl_device); - test_chip_in_expr<DataType, RowMajor, int64_t>(sycl_device); - test_chip_in_expr<DataType, ColMajor, int64_t>(sycl_device); - test_chip_as_lvalue_sycl<DataType, RowMajor, int64_t>(sycl_device); - test_chip_as_lvalue_sycl<DataType, ColMajor, int64_t>(sycl_device); -} -void test_cxx11_tensor_chipping_sycl() -{ - for (const auto& device :Eigen::get_sycl_supported_devices()) { - CALL_SUBTEST(sycl_chipping_test_per_device<float>(device)); - } -} |
