diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_complex_cuda.cu | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_complex_cuda.cu')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_complex_cuda.cu | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_complex_cuda.cu b/eigen/unsupported/test/cxx11_tensor_complex_cuda.cu new file mode 100644 index 0000000..d4e111f --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_complex_cuda.cu @@ -0,0 +1,153 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_TEST_NO_LONGDOUBLE +#define EIGEN_TEST_FUNC cxx11_tensor_complex +#define EIGEN_USE_GPU + +#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 +#include <cuda_fp16.h> +#endif +#include "main.h" +#include <unsupported/Eigen/CXX11/Tensor> + +using Eigen::Tensor; + +void test_cuda_nullary() { + Tensor<std::complex<float>, 1, 0, int> in1(2); + Tensor<std::complex<float>, 1, 0, int> in2(2); + in1.setRandom(); + in2.setRandom(); + + std::size_t float_bytes = in1.size() * sizeof(float); + std::size_t complex_bytes = in1.size() * sizeof(std::complex<float>); + + std::complex<float>* d_in1; + std::complex<float>* d_in2; + float* d_out2; + cudaMalloc((void**)(&d_in1), complex_bytes); + cudaMalloc((void**)(&d_in2), complex_bytes); + cudaMalloc((void**)(&d_out2), float_bytes); + cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice); + cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice); + + Eigen::CudaStreamDevice stream; + Eigen::GpuDevice gpu_device(&stream); + + Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1( + d_in1, 2); + Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in2( + d_in2, 2); + Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_out2( + d_out2, 2); + + gpu_in1.device(gpu_device) = gpu_in1.constant(std::complex<float>(3.14f, 2.7f)); + gpu_out2.device(gpu_device) = gpu_in2.abs(); + + Tensor<std::complex<float>, 1, 0, int> new1(2); + Tensor<float, 1, 0, int> new2(2); + + assert(cudaMemcpyAsync(new1.data(), d_in1, complex_bytes, cudaMemcpyDeviceToHost, + gpu_device.stream()) == cudaSuccess); + assert(cudaMemcpyAsync(new2.data(), d_out2, float_bytes, cudaMemcpyDeviceToHost, + gpu_device.stream()) == cudaSuccess); + + assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); + + for (int i = 0; i < 2; ++i) { + VERIFY_IS_APPROX(new1(i), std::complex<float>(3.14f, 2.7f)); + VERIFY_IS_APPROX(new2(i), std::abs(in2(i))); + } + + cudaFree(d_in1); + cudaFree(d_in2); + cudaFree(d_out2); +} + + +static void test_cuda_sum_reductions() { + + Eigen::CudaStreamDevice stream; + Eigen::GpuDevice gpu_device(&stream); + + const int num_rows = internal::random<int>(1024, 5*1024); + const int num_cols = internal::random<int>(1024, 5*1024); + + Tensor<std::complex<float>, 2> in(num_rows, num_cols); + in.setRandom(); + + Tensor<std::complex<float>, 0> full_redux; + full_redux = in.sum(); + + std::size_t in_bytes = in.size() * sizeof(std::complex<float>); + std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); + std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); + std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); + gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); + + TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); + TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); + + out_gpu.device(gpu_device) = in_gpu.sum(); + + Tensor<std::complex<float>, 0> full_redux_gpu; + gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); + gpu_device.synchronize(); + + // Check that the CPU and GPU reductions return the same result. + VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); + + gpu_device.deallocate(gpu_in_ptr); + gpu_device.deallocate(gpu_out_ptr); +} + + +static void test_cuda_product_reductions() { + + Eigen::CudaStreamDevice stream; + Eigen::GpuDevice gpu_device(&stream); + + const int num_rows = internal::random<int>(1024, 5*1024); + const int num_cols = internal::random<int>(1024, 5*1024); + + Tensor<std::complex<float>, 2> in(num_rows, num_cols); + in.setRandom(); + + Tensor<std::complex<float>, 0> full_redux; + full_redux = in.prod(); + + std::size_t in_bytes = in.size() * sizeof(std::complex<float>); + std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); + std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); + std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); + gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); + + TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); + TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); + + out_gpu.device(gpu_device) = in_gpu.prod(); + + Tensor<std::complex<float>, 0> full_redux_gpu; + gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); + gpu_device.synchronize(); + + // Check that the CPU and GPU reductions return the same result. + VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); + + gpu_device.deallocate(gpu_in_ptr); + gpu_device.deallocate(gpu_out_ptr); +} + + +void test_cxx11_tensor_complex() +{ + CALL_SUBTEST(test_cuda_nullary()); + CALL_SUBTEST(test_cuda_sum_reductions()); + CALL_SUBTEST(test_cuda_product_reductions()); +} |