summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2018-07-03 07:37:12 +0200
committerStanislaw Halik <sthalik@misaki.pl>2018-07-03 08:13:09 +0200
commit88534ba623421c956d8ffcda2d27f41d704d15ef (patch)
treefccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp
parent3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff)
update eigen
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp')
-rw-r--r--eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp469
1 files changed, 0 insertions, 469 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp
deleted file mode 100644
index a4226a6..0000000
--- a/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp
+++ /dev/null
@@ -1,469 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#define EIGEN_TEST_NO_LONGDOUBLE
-#define EIGEN_TEST_NO_COMPLEX
-#define EIGEN_TEST_FUNC cxx11_tensor_convolution_sycl
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
-#define EIGEN_USE_SYCL
-
-#include <iostream>
-#include <chrono>
-#include <ctime>
-
-#include "main.h"
-#include <unsupported/Eigen/CXX11/Tensor>
-#include <iomanip>
-
-using Eigen::array;
-using Eigen::SyclDevice;
-using Eigen::Tensor;
-using Eigen::TensorMap;
-static const float error_threshold =1e-4f;
-
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_larg_expr1D(const Eigen::SyclDevice& sycl_device)
-{
- IndexType indim0 =53;
- IndexType indim1= 55;
- IndexType indim2= 51;
- IndexType outdim0=50;
- IndexType outdim1=55;
- IndexType outdim2=51;
- Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
- Eigen::array<IndexType, 1> kernel_dims = {{4}};
- Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
-
- Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
-
- Eigen::array<IndexType, 1> dims3{{0}};
-
- input.setRandom();
- kernel.setRandom();
- result.setZero();
- result_host.setZero();
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- result_host=input.convolve(kernel, dims3);
-
-for(IndexType i=0; i< outdim0; i++ ){
- for(IndexType j=0; j< outdim1; j++ ){
- for(IndexType k=0; k< outdim2; k++ ){
- if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
- std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
- assert(false);
- }
- }
- }
-}
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_result);
-
-}
-
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_larg_expr2D(const Eigen::SyclDevice& sycl_device)
-{
- IndexType indim0 =53;
- IndexType indim1= 55;
- IndexType indim2= 51;
- IndexType outdim0=50;
- IndexType outdim1=51;
- IndexType outdim2=51;
- Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
- Eigen::array<IndexType, 2> kernel_dims = {{4,5}};
- Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
-
- Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 2, DataLayout,IndexType> kernel(kernel_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
-
- Eigen::array<IndexType, 2> dims3{{0,1}};
-
- input.setRandom();
- kernel.setRandom();
- result.setZero();
- result_host.setZero();
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- result_host=input.convolve(kernel, dims3);
-
-for(IndexType i=0; i< outdim0; i++ ){
- for(IndexType j=0; j< outdim1; j++ ){
- for(IndexType k=0; k< outdim2; k++ ){
- if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
- std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
- assert(false);
- }
- }
- }
-}
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_result);
-
-}
-
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_larg_expr3D(const Eigen::SyclDevice& sycl_device)
-{
- IndexType indim0 =53;
- IndexType indim1= 55;
- IndexType indim2= 51;
- IndexType outdim0=50;
- IndexType outdim1=51;
- IndexType outdim2=49;
- Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
- Eigen::array<IndexType, 3> kernel_dims = {{4,5,3}};
- Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
-
- Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 3, DataLayout,IndexType> kernel(kernel_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
- Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
-
- Eigen::array<IndexType, 3> dims3{{0,1,2}};
-
- input.setRandom();
- kernel.setRandom();
- result.setZero();
- result_host.setZero();
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- result_host=input.convolve(kernel, dims3);
-
-for(IndexType i=0; i< outdim0; i++ ){
- for(IndexType j=0; j< outdim1; j++ ){
- for(IndexType k=0; k< outdim2; k++ ){
- if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
- std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
- assert(false);
- }
- }
- }
-}
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_result);
-
-}
-
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_evals(const Eigen::SyclDevice& sycl_device)
-{
- Eigen::array<IndexType, 2> input_dims = {{3, 3}};
- Eigen::array<IndexType, 1> kernel_dims = {{2}};
- Eigen::array<IndexType, 2> result_dims = {{2, 3}};
-
- Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
- Tensor<DataType, 2, DataLayout,IndexType> result(result_dims);
-
- Eigen::array<IndexType, 1> dims3{{0}};
-
- input.setRandom();
- kernel.setRandom();
- result.setZero();
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_result(d_result, result_dims);
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
- VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
- VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
- VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
- VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
- VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
-
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_result);
-}
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_expr(const Eigen::SyclDevice& sycl_device)
-{
- Eigen::array<IndexType, 2> input_dims = {{3, 3}};
- Eigen::array<IndexType, 2> kernel_dims = {{2, 2}};
- Eigen::array<IndexType, 2> result_dims = {{2, 2}};
-
- Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 2, DataLayout, IndexType> kernel(kernel_dims);
- Tensor<DataType, 2, DataLayout, IndexType> result(result_dims);
-
- input.setRandom();
- kernel.setRandom();
- Eigen::array<IndexType, 2> dims;
- dims[0] = 0;
- dims[1] = 1;
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_result(d_result, result_dims);
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
- input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
- VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
- input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
- VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
- input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
- VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
- input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
-
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_result);
-}
-
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_modes(const Eigen::SyclDevice& sycl_device){
-
-Eigen::array<IndexType, 1> input_dims = {{3}};
-Eigen::array<IndexType, 1> kernel_dims = {{3}};
-
-Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
-Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
-
-input.setRandom();
-kernel.setRandom();
-Eigen::array<IndexType, 1> dims;
-dims[0] = 0;
-
- input(0) = 1.0f;
- input(1) = 2.0f;
- input(2) = 3.0f;
- kernel(0) = 0.5f;
- kernel(1) = 1.0f;
- kernel(2) = 0.0f;
-
- Eigen::array<std::pair<IndexType, IndexType>, 1> padding;
-
- // Emulate VALID mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(0, 0);
- Tensor<DataType, 1, DataLayout, IndexType> valid(1);
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t valid_bytes = valid.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_valid = static_cast<DataType*>(sycl_device.allocate(valid_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_valid(d_valid, valid.dimensions());
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_valid.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
- sycl_device.memcpyDeviceToHost(valid.data(), d_valid, valid_bytes);
-
- VERIFY_IS_EQUAL(valid.dimension(0), 1);
- VERIFY_IS_APPROX(valid(0), 2.5f);
-
- // Emulate SAME mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(1, 1);
- Tensor<DataType, 1, DataLayout, IndexType> same(3);
- std::size_t same_bytes = same.size() * sizeof(DataType);
- DataType * d_same = static_cast<DataType*>(sycl_device.allocate(same_bytes));
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_same(d_same, same.dimensions());
- gpu_same.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
- sycl_device.memcpyDeviceToHost(same.data(), d_same, same_bytes);
-
- VERIFY_IS_EQUAL(same.dimension(0), 3);
- VERIFY_IS_APPROX(same(0), 1.0f);
- VERIFY_IS_APPROX(same(1), 2.5f);
- VERIFY_IS_APPROX(same(2), 4.0f);
-
- // Emulate FULL mode (as defined in
- // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
- padding[0] = std::make_pair(2, 2);
-
- Tensor<DataType, 1, DataLayout, IndexType> full(5);
- std::size_t full_bytes = full.size() * sizeof(DataType);
- DataType * d_full = static_cast<DataType*>(sycl_device.allocate(full_bytes));
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_full(d_full, full.dimensions());
- gpu_full.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
- sycl_device.memcpyDeviceToHost(full.data(), d_full, full_bytes);
-
- VERIFY_IS_EQUAL(full.dimension(0), 5);
- VERIFY_IS_APPROX(full(0), 0.0f);
- VERIFY_IS_APPROX(full(1), 1.0f);
- VERIFY_IS_APPROX(full(2), 2.5f);
- VERIFY_IS_APPROX(full(3), 4.0f);
- VERIFY_IS_APPROX(full(4), 1.5f);
-
- sycl_device.deallocate(d_input);
- sycl_device.deallocate(d_kernel);
- sycl_device.deallocate(d_valid);
- sycl_device.deallocate(d_same);
- sycl_device.deallocate(d_full);
-
-}
-
-template <typename DataType, int DataLayout, typename IndexType>
-static void test_strides(const Eigen::SyclDevice& sycl_device){
-
- Eigen::array<IndexType, 1> input_dims = {{13}};
- Eigen::array<IndexType, 1> kernel_dims = {{3}};
-
- Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
- Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
- Tensor<DataType, 1, DataLayout, IndexType> result(2);
-
- input.setRandom();
- kernel.setRandom();
- Eigen::array<IndexType, 1> dims;
- dims[0] = 0;
-
- Eigen::array<IndexType, 1> stride_of_3;
- stride_of_3[0] = 3;
- Eigen::array<IndexType, 1> stride_of_2;
- stride_of_2[0] = 2;
-
- std::size_t input_bytes = input.size() * sizeof(DataType);
- std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
- std::size_t result_bytes = result.size() * sizeof(DataType);
-
- DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
- DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
- DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
-
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
- Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_result(d_result, result.dimensions());
- sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
- sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
-
- gpu_result.device(sycl_device)=gpu_input.stride(stride_of_3).convolve(gpu_kernel, dims).stride(stride_of_2);
- sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
-
- VERIFY_IS_EQUAL(result.dimension(0), 2);
- VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) +
- input(6)*kernel(2)));
- VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) +
- input(12)*kernel(2)));
-}
-
-template <typename Dev_selector> void tensorConvolutionPerDevice(Dev_selector& s){
- QueueInterface queueInterface(s);
- auto sycl_device=Eigen::SyclDevice(&queueInterface);
- test_larg_expr1D<float, RowMajor, int64_t>(sycl_device);
- test_larg_expr1D<float, ColMajor, int64_t>(sycl_device);
- test_larg_expr2D<float, RowMajor, int64_t>(sycl_device);
- test_larg_expr2D<float, ColMajor, int64_t>(sycl_device);
- test_larg_expr3D<float, RowMajor, int64_t>(sycl_device);
- test_larg_expr3D<float, ColMajor, int64_t>(sycl_device);
- test_evals<float, ColMajor, int64_t>(sycl_device);
- test_evals<float, RowMajor, int64_t>(sycl_device);
- test_expr<float, ColMajor, int64_t>(sycl_device);
- test_expr<float, RowMajor, int64_t>(sycl_device);
- test_modes<float, ColMajor, int64_t>(sycl_device);
- test_modes<float, RowMajor, int64_t>(sycl_device);
- test_strides<float, ColMajor, int64_t>(sycl_device);
- test_strides<float, RowMajor, int64_t>(sycl_device);
-}
-
-void test_cxx11_tensor_convolution_sycl() {
- for (const auto& device :Eigen::get_sycl_supported_devices()) {
- CALL_SUBTEST(tensorConvolutionPerDevice(device));
- }
-}