diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 07:37:12 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 08:13:09 +0200 |
commit | 88534ba623421c956d8ffcda2d27f41d704d15ef (patch) | |
tree | fccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp | |
parent | 3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff) |
update eigen
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp | 469 |
1 files changed, 0 insertions, 469 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp deleted file mode 100644 index a4226a6..0000000 --- a/eigen/unsupported/test/cxx11_tensor_convolution_sycl.cpp +++ /dev/null @@ -1,469 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 -// Mehdi Goli Codeplay Software Ltd. -// Ralph Potter Codeplay Software Ltd. -// Luke Iwanski Codeplay Software Ltd. -// Contact: <eigen@codeplay.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_TEST_NO_LONGDOUBLE -#define EIGEN_TEST_NO_COMPLEX -#define EIGEN_TEST_FUNC cxx11_tensor_convolution_sycl -#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t -#define EIGEN_USE_SYCL - -#include <iostream> -#include <chrono> -#include <ctime> - -#include "main.h" -#include <unsupported/Eigen/CXX11/Tensor> -#include <iomanip> - -using Eigen::array; -using Eigen::SyclDevice; -using Eigen::Tensor; -using Eigen::TensorMap; -static const float error_threshold =1e-4f; - - -template <typename DataType, int DataLayout, typename IndexType> -static void test_larg_expr1D(const Eigen::SyclDevice& sycl_device) -{ - IndexType indim0 =53; - IndexType indim1= 55; - IndexType indim2= 51; - IndexType outdim0=50; - IndexType outdim1=55; - IndexType outdim2=51; - Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; - Eigen::array<IndexType, 1> kernel_dims = {{4}}; - Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; - - Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims); - Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); - Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); - - Eigen::array<IndexType, 1> dims3{{0}}; - - input.setRandom(); - kernel.setRandom(); - result.setZero(); - result_host.setZero(); - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - result_host=input.convolve(kernel, dims3); - -for(IndexType i=0; i< outdim0; i++ ){ - for(IndexType j=0; j< outdim1; j++ ){ - for(IndexType k=0; k< outdim2; k++ ){ - if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { - std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; - assert(false); - } - } - } -} - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_result); - -} - - -template <typename DataType, int DataLayout, typename IndexType> -static void test_larg_expr2D(const Eigen::SyclDevice& sycl_device) -{ - IndexType indim0 =53; - IndexType indim1= 55; - IndexType indim2= 51; - IndexType outdim0=50; - IndexType outdim1=51; - IndexType outdim2=51; - Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; - Eigen::array<IndexType, 2> kernel_dims = {{4,5}}; - Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; - - Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 2, DataLayout,IndexType> kernel(kernel_dims); - Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); - Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); - - Eigen::array<IndexType, 2> dims3{{0,1}}; - - input.setRandom(); - kernel.setRandom(); - result.setZero(); - result_host.setZero(); - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - result_host=input.convolve(kernel, dims3); - -for(IndexType i=0; i< outdim0; i++ ){ - for(IndexType j=0; j< outdim1; j++ ){ - for(IndexType k=0; k< outdim2; k++ ){ - if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { - std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; - assert(false); - } - } - } -} - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_result); - -} - - -template <typename DataType, int DataLayout, typename IndexType> -static void test_larg_expr3D(const Eigen::SyclDevice& sycl_device) -{ - IndexType indim0 =53; - IndexType indim1= 55; - IndexType indim2= 51; - IndexType outdim0=50; - IndexType outdim1=51; - IndexType outdim2=49; - Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; - Eigen::array<IndexType, 3> kernel_dims = {{4,5,3}}; - Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; - - Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 3, DataLayout,IndexType> kernel(kernel_dims); - Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); - Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); - - Eigen::array<IndexType, 3> dims3{{0,1,2}}; - - input.setRandom(); - kernel.setRandom(); - result.setZero(); - result_host.setZero(); - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - result_host=input.convolve(kernel, dims3); - -for(IndexType i=0; i< outdim0; i++ ){ - for(IndexType j=0; j< outdim1; j++ ){ - for(IndexType k=0; k< outdim2; k++ ){ - if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { - std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; - assert(false); - } - } - } -} - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_result); - -} - - -template <typename DataType, int DataLayout, typename IndexType> -static void test_evals(const Eigen::SyclDevice& sycl_device) -{ - Eigen::array<IndexType, 2> input_dims = {{3, 3}}; - Eigen::array<IndexType, 1> kernel_dims = {{2}}; - Eigen::array<IndexType, 2> result_dims = {{2, 3}}; - - Tensor<DataType, 2, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims); - Tensor<DataType, 2, DataLayout,IndexType> result(result_dims); - - Eigen::array<IndexType, 1> dims3{{0}}; - - input.setRandom(); - kernel.setRandom(); - result.setZero(); - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_result(d_result, result_dims); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0 - VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2 - VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4 - VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1 - VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3 - VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5 - - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_result); -} - -template <typename DataType, int DataLayout, typename IndexType> -static void test_expr(const Eigen::SyclDevice& sycl_device) -{ - Eigen::array<IndexType, 2> input_dims = {{3, 3}}; - Eigen::array<IndexType, 2> kernel_dims = {{2, 2}}; - Eigen::array<IndexType, 2> result_dims = {{2, 2}}; - - Tensor<DataType, 2, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 2, DataLayout, IndexType> kernel(kernel_dims); - Tensor<DataType, 2, DataLayout, IndexType> result(result_dims); - - input.setRandom(); - kernel.setRandom(); - Eigen::array<IndexType, 2> dims; - dims[0] = 0; - dims[1] = 1; - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_result(d_result, result_dims); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) + - input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1)); - VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) + - input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1)); - VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) + - input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1)); - VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) + - input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1)); - - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_result); -} - - -template <typename DataType, int DataLayout, typename IndexType> -static void test_modes(const Eigen::SyclDevice& sycl_device){ - -Eigen::array<IndexType, 1> input_dims = {{3}}; -Eigen::array<IndexType, 1> kernel_dims = {{3}}; - -Tensor<DataType, 1, DataLayout, IndexType> input(input_dims); -Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims); - -input.setRandom(); -kernel.setRandom(); -Eigen::array<IndexType, 1> dims; -dims[0] = 0; - - input(0) = 1.0f; - input(1) = 2.0f; - input(2) = 3.0f; - kernel(0) = 0.5f; - kernel(1) = 1.0f; - kernel(2) = 0.0f; - - Eigen::array<std::pair<IndexType, IndexType>, 1> padding; - - // Emulate VALID mode (as defined in - // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). - padding[0] = std::make_pair(0, 0); - Tensor<DataType, 1, DataLayout, IndexType> valid(1); - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t valid_bytes = valid.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_valid = static_cast<DataType*>(sycl_device.allocate(valid_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_valid(d_valid, valid.dimensions()); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_valid.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); - sycl_device.memcpyDeviceToHost(valid.data(), d_valid, valid_bytes); - - VERIFY_IS_EQUAL(valid.dimension(0), 1); - VERIFY_IS_APPROX(valid(0), 2.5f); - - // Emulate SAME mode (as defined in - // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). - padding[0] = std::make_pair(1, 1); - Tensor<DataType, 1, DataLayout, IndexType> same(3); - std::size_t same_bytes = same.size() * sizeof(DataType); - DataType * d_same = static_cast<DataType*>(sycl_device.allocate(same_bytes)); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_same(d_same, same.dimensions()); - gpu_same.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); - sycl_device.memcpyDeviceToHost(same.data(), d_same, same_bytes); - - VERIFY_IS_EQUAL(same.dimension(0), 3); - VERIFY_IS_APPROX(same(0), 1.0f); - VERIFY_IS_APPROX(same(1), 2.5f); - VERIFY_IS_APPROX(same(2), 4.0f); - - // Emulate FULL mode (as defined in - // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). - padding[0] = std::make_pair(2, 2); - - Tensor<DataType, 1, DataLayout, IndexType> full(5); - std::size_t full_bytes = full.size() * sizeof(DataType); - DataType * d_full = static_cast<DataType*>(sycl_device.allocate(full_bytes)); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_full(d_full, full.dimensions()); - gpu_full.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); - sycl_device.memcpyDeviceToHost(full.data(), d_full, full_bytes); - - VERIFY_IS_EQUAL(full.dimension(0), 5); - VERIFY_IS_APPROX(full(0), 0.0f); - VERIFY_IS_APPROX(full(1), 1.0f); - VERIFY_IS_APPROX(full(2), 2.5f); - VERIFY_IS_APPROX(full(3), 4.0f); - VERIFY_IS_APPROX(full(4), 1.5f); - - sycl_device.deallocate(d_input); - sycl_device.deallocate(d_kernel); - sycl_device.deallocate(d_valid); - sycl_device.deallocate(d_same); - sycl_device.deallocate(d_full); - -} - -template <typename DataType, int DataLayout, typename IndexType> -static void test_strides(const Eigen::SyclDevice& sycl_device){ - - Eigen::array<IndexType, 1> input_dims = {{13}}; - Eigen::array<IndexType, 1> kernel_dims = {{3}}; - - Tensor<DataType, 1, DataLayout, IndexType> input(input_dims); - Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims); - Tensor<DataType, 1, DataLayout, IndexType> result(2); - - input.setRandom(); - kernel.setRandom(); - Eigen::array<IndexType, 1> dims; - dims[0] = 0; - - Eigen::array<IndexType, 1> stride_of_3; - stride_of_3[0] = 3; - Eigen::array<IndexType, 1> stride_of_2; - stride_of_2[0] = 2; - - std::size_t input_bytes = input.size() * sizeof(DataType); - std::size_t kernel_bytes = kernel.size() * sizeof(DataType); - std::size_t result_bytes = result.size() * sizeof(DataType); - - DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); - DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); - DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); - - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); - Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_result(d_result, result.dimensions()); - sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); - sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); - - gpu_result.device(sycl_device)=gpu_input.stride(stride_of_3).convolve(gpu_kernel, dims).stride(stride_of_2); - sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); - - VERIFY_IS_EQUAL(result.dimension(0), 2); - VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) + - input(6)*kernel(2))); - VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) + - input(12)*kernel(2))); -} - -template <typename Dev_selector> void tensorConvolutionPerDevice(Dev_selector& s){ - QueueInterface queueInterface(s); - auto sycl_device=Eigen::SyclDevice(&queueInterface); - test_larg_expr1D<float, RowMajor, int64_t>(sycl_device); - test_larg_expr1D<float, ColMajor, int64_t>(sycl_device); - test_larg_expr2D<float, RowMajor, int64_t>(sycl_device); - test_larg_expr2D<float, ColMajor, int64_t>(sycl_device); - test_larg_expr3D<float, RowMajor, int64_t>(sycl_device); - test_larg_expr3D<float, ColMajor, int64_t>(sycl_device); - test_evals<float, ColMajor, int64_t>(sycl_device); - test_evals<float, RowMajor, int64_t>(sycl_device); - test_expr<float, ColMajor, int64_t>(sycl_device); - test_expr<float, RowMajor, int64_t>(sycl_device); - test_modes<float, ColMajor, int64_t>(sycl_device); - test_modes<float, RowMajor, int64_t>(sycl_device); - test_strides<float, ColMajor, int64_t>(sycl_device); - test_strides<float, RowMajor, int64_t>(sycl_device); -} - -void test_cxx11_tensor_convolution_sycl() { - for (const auto& device :Eigen::get_sycl_supported_devices()) { - CALL_SUBTEST(tensorConvolutionPerDevice(device)); - } -} |