diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 07:37:12 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 08:13:09 +0200 |
commit | 88534ba623421c956d8ffcda2d27f41d704d15ef (patch) | |
tree | fccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp | |
parent | 3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff) |
update eigen
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp | 157 |
1 files changed, 0 insertions, 157 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp deleted file mode 100644 index dc748b7..0000000 --- a/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp +++ /dev/null @@ -1,157 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 -// Mehdi Goli Codeplay Software Ltd. -// Ralph Potter Codeplay Software Ltd. -// Luke Iwanski Codeplay Software Ltd. -// Contact: <eigen@codeplay.com> -// Benoit Steiner <benoit.steiner.goog@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -#define EIGEN_TEST_NO_LONGDOUBLE -#define EIGEN_TEST_NO_COMPLEX -#define EIGEN_TEST_FUNC cxx11_tensor_padding_sycl -#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t -#define EIGEN_USE_SYCL - - -#include "main.h" -#include <unsupported/Eigen/CXX11/Tensor> - -using Eigen::array; -using Eigen::SyclDevice; -using Eigen::Tensor; -using Eigen::TensorMap; - - -template<typename DataType, int DataLayout, typename IndexType> -static void test_simple_padding(const Eigen::SyclDevice& sycl_device) -{ - - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; - - Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); - tensor.setRandom(); - - array<std::pair<IndexType, IndexType>, 4> paddings; - paddings[0] = std::make_pair(0, 0); - paddings[1] = std::make_pair(2, 1); - paddings[2] = std::make_pair(3, 4); - paddings[3] = std::make_pair(0, 0); - - IndexType padedSizeDim1 = 2; - IndexType padedSizeDim2 = 6; - IndexType padedSizeDim3 = 12; - IndexType padedSizeDim4 = 7; - array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}}; - - Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange); - - - DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); - DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(padded.size()*sizeof(DataType))); - TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange); - TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu2(gpu_data2, padedtensorRange); - - VERIFY_IS_EQUAL(padded.dimension(0), 2+0); - VERIFY_IS_EQUAL(padded.dimension(1), 3+3); - VERIFY_IS_EQUAL(padded.dimension(2), 5+7); - VERIFY_IS_EQUAL(padded.dimension(3), 7+0); - sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); - gpu2.device(sycl_device)=gpu1.pad(paddings); - sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2,(padded.size())*sizeof(DataType)); - for (IndexType i = 0; i < padedSizeDim1; ++i) { - for (IndexType j = 0; j < padedSizeDim2; ++j) { - for (IndexType k = 0; k < padedSizeDim3; ++k) { - for (IndexType l = 0; l < padedSizeDim4; ++l) { - if (j >= 2 && j < 5 && k >= 3 && k < 8) { - VERIFY_IS_EQUAL(padded(i,j,k,l), tensor(i,j-2,k-3,l)); - } else { - VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f); - } - } - } - } - } - sycl_device.deallocate(gpu_data1); - sycl_device.deallocate(gpu_data2); -} - -template<typename DataType, int DataLayout, typename IndexType> -static void test_padded_expr(const Eigen::SyclDevice& sycl_device) -{ - IndexType sizeDim1 = 2; - IndexType sizeDim2 = 3; - IndexType sizeDim3 = 5; - IndexType sizeDim4 = 7; - array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; - - Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange); - tensor.setRandom(); - - array<std::pair<IndexType, IndexType>, 4> paddings; - paddings[0] = std::make_pair(0, 0); - paddings[1] = std::make_pair(2, 1); - paddings[2] = std::make_pair(3, 4); - paddings[3] = std::make_pair(0, 0); - - Eigen::DSizes<IndexType, 2> reshape_dims; - reshape_dims[0] = 12; - reshape_dims[1] = 84; - - - Tensor<DataType, 2, DataLayout, IndexType> result(reshape_dims); - - DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); - DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(result.size()*sizeof(DataType))); - TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange); - TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, reshape_dims); - - - sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); - gpu2.device(sycl_device)=gpu1.pad(paddings).reshape(reshape_dims); - sycl_device.memcpyDeviceToHost(result.data(), gpu_data2,(result.size())*sizeof(DataType)); - - for (IndexType i = 0; i < 2; ++i) { - for (IndexType j = 0; j < 6; ++j) { - for (IndexType k = 0; k < 12; ++k) { - for (IndexType l = 0; l < 7; ++l) { - const float result_value = DataLayout == ColMajor ? - result(i+2*j,k+12*l) : result(j+6*i,l+7*k); - if (j >= 2 && j < 5 && k >= 3 && k < 8) { - VERIFY_IS_EQUAL(result_value, tensor(i,j-2,k-3,l)); - } else { - VERIFY_IS_EQUAL(result_value, 0.0f); - } - } - } - } - } - sycl_device.deallocate(gpu_data1); - sycl_device.deallocate(gpu_data2); -} - -template<typename DataType, typename dev_Selector> void sycl_padding_test_per_device(dev_Selector s){ - QueueInterface queueInterface(s); - auto sycl_device = Eigen::SyclDevice(&queueInterface); - test_simple_padding<DataType, RowMajor, int64_t>(sycl_device); - test_simple_padding<DataType, ColMajor, int64_t>(sycl_device); - test_padded_expr<DataType, RowMajor, int64_t>(sycl_device); - test_padded_expr<DataType, ColMajor, int64_t>(sycl_device); - -} -void test_cxx11_tensor_padding_sycl() -{ - for (const auto& device :Eigen::get_sycl_supported_devices()) { - CALL_SUBTEST(sycl_padding_test_per_device<float>(device)); - } -} |