summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2018-07-03 07:37:12 +0200
committerStanislaw Halik <sthalik@misaki.pl>2018-07-03 08:13:09 +0200
commit88534ba623421c956d8ffcda2d27f41d704d15ef (patch)
treefccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp
parent3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff)
update eigen
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp')
-rw-r--r--eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp157
1 files changed, 0 insertions, 157 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp
deleted file mode 100644
index dc748b7..0000000
--- a/eigen/unsupported/test/cxx11_tensor_padding_sycl.cpp
+++ /dev/null
@@ -1,157 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-// Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#define EIGEN_TEST_NO_LONGDOUBLE
-#define EIGEN_TEST_NO_COMPLEX
-#define EIGEN_TEST_FUNC cxx11_tensor_padding_sycl
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
-#define EIGEN_USE_SYCL
-
-
-#include "main.h"
-#include <unsupported/Eigen/CXX11/Tensor>
-
-using Eigen::array;
-using Eigen::SyclDevice;
-using Eigen::Tensor;
-using Eigen::TensorMap;
-
-
-template<typename DataType, int DataLayout, typename IndexType>
-static void test_simple_padding(const Eigen::SyclDevice& sycl_device)
-{
-
- IndexType sizeDim1 = 2;
- IndexType sizeDim2 = 3;
- IndexType sizeDim3 = 5;
- IndexType sizeDim4 = 7;
- array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
-
- Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
- tensor.setRandom();
-
- array<std::pair<IndexType, IndexType>, 4> paddings;
- paddings[0] = std::make_pair(0, 0);
- paddings[1] = std::make_pair(2, 1);
- paddings[2] = std::make_pair(3, 4);
- paddings[3] = std::make_pair(0, 0);
-
- IndexType padedSizeDim1 = 2;
- IndexType padedSizeDim2 = 6;
- IndexType padedSizeDim3 = 12;
- IndexType padedSizeDim4 = 7;
- array<IndexType, 4> padedtensorRange = {{padedSizeDim1, padedSizeDim2, padedSizeDim3, padedSizeDim4}};
-
- Tensor<DataType, 4, DataLayout, IndexType> padded(padedtensorRange);
-
-
- DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
- DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(padded.size()*sizeof(DataType)));
- TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
- TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu2(gpu_data2, padedtensorRange);
-
- VERIFY_IS_EQUAL(padded.dimension(0), 2+0);
- VERIFY_IS_EQUAL(padded.dimension(1), 3+3);
- VERIFY_IS_EQUAL(padded.dimension(2), 5+7);
- VERIFY_IS_EQUAL(padded.dimension(3), 7+0);
- sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
- gpu2.device(sycl_device)=gpu1.pad(paddings);
- sycl_device.memcpyDeviceToHost(padded.data(), gpu_data2,(padded.size())*sizeof(DataType));
- for (IndexType i = 0; i < padedSizeDim1; ++i) {
- for (IndexType j = 0; j < padedSizeDim2; ++j) {
- for (IndexType k = 0; k < padedSizeDim3; ++k) {
- for (IndexType l = 0; l < padedSizeDim4; ++l) {
- if (j >= 2 && j < 5 && k >= 3 && k < 8) {
- VERIFY_IS_EQUAL(padded(i,j,k,l), tensor(i,j-2,k-3,l));
- } else {
- VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f);
- }
- }
- }
- }
- }
- sycl_device.deallocate(gpu_data1);
- sycl_device.deallocate(gpu_data2);
-}
-
-template<typename DataType, int DataLayout, typename IndexType>
-static void test_padded_expr(const Eigen::SyclDevice& sycl_device)
-{
- IndexType sizeDim1 = 2;
- IndexType sizeDim2 = 3;
- IndexType sizeDim3 = 5;
- IndexType sizeDim4 = 7;
- array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
-
- Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
- tensor.setRandom();
-
- array<std::pair<IndexType, IndexType>, 4> paddings;
- paddings[0] = std::make_pair(0, 0);
- paddings[1] = std::make_pair(2, 1);
- paddings[2] = std::make_pair(3, 4);
- paddings[3] = std::make_pair(0, 0);
-
- Eigen::DSizes<IndexType, 2> reshape_dims;
- reshape_dims[0] = 12;
- reshape_dims[1] = 84;
-
-
- Tensor<DataType, 2, DataLayout, IndexType> result(reshape_dims);
-
- DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
- DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(result.size()*sizeof(DataType)));
- TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
- TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, reshape_dims);
-
-
- sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
- gpu2.device(sycl_device)=gpu1.pad(paddings).reshape(reshape_dims);
- sycl_device.memcpyDeviceToHost(result.data(), gpu_data2,(result.size())*sizeof(DataType));
-
- for (IndexType i = 0; i < 2; ++i) {
- for (IndexType j = 0; j < 6; ++j) {
- for (IndexType k = 0; k < 12; ++k) {
- for (IndexType l = 0; l < 7; ++l) {
- const float result_value = DataLayout == ColMajor ?
- result(i+2*j,k+12*l) : result(j+6*i,l+7*k);
- if (j >= 2 && j < 5 && k >= 3 && k < 8) {
- VERIFY_IS_EQUAL(result_value, tensor(i,j-2,k-3,l));
- } else {
- VERIFY_IS_EQUAL(result_value, 0.0f);
- }
- }
- }
- }
- }
- sycl_device.deallocate(gpu_data1);
- sycl_device.deallocate(gpu_data2);
-}
-
-template<typename DataType, typename dev_Selector> void sycl_padding_test_per_device(dev_Selector s){
- QueueInterface queueInterface(s);
- auto sycl_device = Eigen::SyclDevice(&queueInterface);
- test_simple_padding<DataType, RowMajor, int64_t>(sycl_device);
- test_simple_padding<DataType, ColMajor, int64_t>(sycl_device);
- test_padded_expr<DataType, RowMajor, int64_t>(sycl_device);
- test_padded_expr<DataType, ColMajor, int64_t>(sycl_device);
-
-}
-void test_cxx11_tensor_padding_sycl()
-{
- for (const auto& device :Eigen::get_sycl_supported_devices()) {
- CALL_SUBTEST(sycl_padding_test_per_device<float>(device));
- }
-}