diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2017-03-25 14:17:07 +0100 |
commit | 35f7829af10c61e33dd2e2a7a015058e11a11ea0 (patch) | |
tree | 7135010dcf8fd0a49f3020d52112709bcb883bd6 /eigen/unsupported/test/cxx11_tensor_reverse.cpp | |
parent | 6e8724193e40a932faf9064b664b529e7301c578 (diff) |
update
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_reverse.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_reverse.cpp | 190 |
1 files changed, 190 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_reverse.cpp b/eigen/unsupported/test/cxx11_tensor_reverse.cpp new file mode 100644 index 0000000..b35b8d2 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_reverse.cpp @@ -0,0 +1,190 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and +// Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; +using Eigen::array; + +template <int DataLayout> +static void test_simple_reverse() +{ + Tensor<float, 4, DataLayout> tensor(2,3,5,7); + tensor.setRandom(); + + array<bool, 4> dim_rev; + dim_rev[0] = false; + dim_rev[1] = true; + dim_rev[2] = true; + dim_rev[3] = false; + + Tensor<float, 4, DataLayout> reversed_tensor; + reversed_tensor = tensor.reverse(dim_rev); + + VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); + VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); + VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); + VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l)); + } + } + } + } + + dim_rev[0] = true; + dim_rev[1] = false; + dim_rev[2] = false; + dim_rev[3] = false; + + reversed_tensor = tensor.reverse(dim_rev); + + VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); + VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); + VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); + VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); + + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l)); + } + } + } + } + + dim_rev[0] = true; + dim_rev[1] = false; + dim_rev[2] = false; + dim_rev[3] = true; + + reversed_tensor = tensor.reverse(dim_rev); + + VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); + VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); + VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); + VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); + + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l)); + } + } + } + } +} + + +template <int DataLayout> +static void test_expr_reverse(bool LValue) +{ + Tensor<float, 4, DataLayout> tensor(2,3,5,7); + tensor.setRandom(); + + array<bool, 4> dim_rev; + dim_rev[0] = false; + dim_rev[1] = true; + dim_rev[2] = false; + dim_rev[3] = true; + + Tensor<float, 4, DataLayout> expected(2, 3, 5, 7); + if (LValue) { + expected.reverse(dim_rev) = tensor; + } else { + expected = tensor.reverse(dim_rev); + } + + Tensor<float, 4, DataLayout> result(2,3,5,7); + + array<ptrdiff_t, 4> src_slice_dim; + src_slice_dim[0] = 2; + src_slice_dim[1] = 3; + src_slice_dim[2] = 1; + src_slice_dim[3] = 7; + array<ptrdiff_t, 4> src_slice_start; + src_slice_start[0] = 0; + src_slice_start[1] = 0; + src_slice_start[2] = 0; + src_slice_start[3] = 0; + array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim; + array<ptrdiff_t, 4> dst_slice_start = src_slice_start; + + for (int i = 0; i < 5; ++i) { + if (LValue) { + result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = + tensor.slice(src_slice_start, src_slice_dim); + } else { + result.slice(dst_slice_start, dst_slice_dim) = + tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev); + } + src_slice_start[2] += 1; + dst_slice_start[2] += 1; + } + + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 3); + VERIFY_IS_EQUAL(result.dimension(2), 5); + VERIFY_IS_EQUAL(result.dimension(3), 7); + + for (int i = 0; i < expected.dimension(0); ++i) { + for (int j = 0; j < expected.dimension(1); ++j) { + for (int k = 0; k < expected.dimension(2); ++k) { + for (int l = 0; l < expected.dimension(3); ++l) { + VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); + } + } + } + } + + dst_slice_start[2] = 0; + result.setRandom(); + for (int i = 0; i < 5; ++i) { + if (LValue) { + result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = + tensor.slice(dst_slice_start, dst_slice_dim); + } else { + result.slice(dst_slice_start, dst_slice_dim) = + tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); + } + dst_slice_start[2] += 1; + } + + for (int i = 0; i < expected.dimension(0); ++i) { + for (int j = 0; j < expected.dimension(1); ++j) { + for (int k = 0; k < expected.dimension(2); ++k) { + for (int l = 0; l < expected.dimension(3); ++l) { + VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); + } + } + } + } +} + + +void test_cxx11_tensor_reverse() +{ + CALL_SUBTEST(test_simple_reverse<ColMajor>()); + CALL_SUBTEST(test_simple_reverse<RowMajor>()); + CALL_SUBTEST(test_expr_reverse<ColMajor>(true)); + CALL_SUBTEST(test_expr_reverse<RowMajor>(true)); + CALL_SUBTEST(test_expr_reverse<ColMajor>(false)); + CALL_SUBTEST(test_expr_reverse<RowMajor>(false)); +} |